zoukankan      html  css  js  c++  java
  • yolov3 in PyTorch

    https://github.com/ultralytics/yolov3

    Introduction简介

    This directory contains PyTorch YOLOv3 software developed by Ultralytics LLC, and is freely available for redistribution under the GPL-3.0 license. For more information please visit https://www.ultralytics.com.

    此目录包含由Ultralytics LLC开发的PyTorch YOLOv3软件,可根据GPL-3.0许可证免费重新分发。更多信息请访问https://www.ultralytics.com。

    Description描述

    The https://github.com/ultralytics/yolov3 repo contains inference and training code for YOLOv3 in PyTorch. The code works on Linux, MacOS and Windows. Training is done on the COCO dataset by default: https://cocodataset.org/#home. Credit to Joseph Redmon for YOLO: https://pjreddie.com/darknet/yolo/.

    https://github.com/ultralytics/yolov3 托管包含PyTorch中yolov3的引用和训练代码。这段代码可以在Linux、MacOS和Windows上运行。默认情况下,训练是在COCO数据集上完成的:https://COCO dataset.org/'35;home。YOLO的版权归属于约瑟夫·雷蒙:https://pjreddie.com/darknet/YOLO/。

    Requirements

    Python 3.7 or later with the following pip3 install -U -r requirements.txt packages:

    • numpy
    • torch >= 1.1.0
    • opencv-python
    • tqdm

    Tutorials教程

    Jupyter Notebook

    Our Jupyter notebook provides quick training, inference and testing examples.

    我们的Jupyter笔记本提供了快速的培训、推理和测试示例。

    Training

    Start Training: python3 train.py to begin training after downloading COCO data with data/get_coco_dataset.sh. Each epoch trains on 117,263 images from the train and validate COCO sets, and tests on 5000 images from the COCO validate set.

    在使用data/get_coco_dataset.sh下載了COCO數據集之後使用python3 train.py開始訓練。

    Resume Training: python3 train.py --resume to resume training from weights/last.pt.

    Plot Training: from utils import utils; utils.plot_results() plots training results from coco_16img.datacoco_64img.data, 2 example datasets available in the data/ folder, which train and test on the first 16 and 64 images of the COCO2014-trainval dataset.

    Image Augmentation

    datasets.py applies random OpenCV-powered (https://opencv.org/) augmentation to the input images in accordance with the following specifications. Augmentation is applied only during training, not during inference. Bounding boxes are automatically tracked and updated with the images. 416 x 416 examples pictured below.

    AugmentationDescription
    Translation +/- 10% (vertical and horizontal)
    Rotation +/- 5 degrees
    Shear +/- 2 degrees (vertical and horizontal)
    Scale +/- 10%
    Reflection 50% probability (horizontal-only)
    HSV Saturation +/- 50%
    HSV Intensity +/- 50%

    Speed

    https://cloud.google.com/deep-learning-vm/
    Machine type: preemptible n1-standard-16 (16 vCPUs, 60 GB memory)
    CPU platform: Intel Skylake
    GPUs: K80 ($0.20/hr), T4 ($0.35/hr), V100 ($0.83/hr) CUDA with Nvidia Apex FP16/32
    HDD: 1 TB SSD
    Dataset: COCO train 2014 (117,263 images)
    Model: yolov3-spp.cfg
    Command: python3 train.py --img 416 --batch 32 --accum 2

    GPUn--batch --accumimg/sepoch
    time
    epoch
    cost
    K80 1 32 x 2 11 175 min $0.58
    T4 1
    2
    32 x 2
    64 x 1
    41
    61
    48 min
    32 min
    $0.28
    $0.36
    V100 1
    2
    32 x 2
    64 x 1
    122
    178
    16 min
    11 min
    $0.23
    $0.31
    2080Ti 1
    2
    32 x 2
    64 x 1
    81
    140
    24 min
    14 min
    -

    Inference

    detect.py runs inference on any sources:

    python3 detect.py --source ...
    • Image: --source file.jpg
    • Video: --source file.mp4
    • Directory: --source dir/
    • Webcam: --source 0
    • RTSP stream: --source rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa
    • HTTP stream: --source http://wmccpinetop.axiscam.net/mjpg/video.mjpg

    To run a specific models:

    YOLOv3: python3 detect.py --cfg cfg/yolov3.cfg --weights yolov3.weights

    YOLOv3-tiny: python3 detect.py --cfg cfg/yolov3-tiny.cfg --weights yolov3-tiny.weights

    YOLOv3-SPP: python3 detect.py --cfg cfg/yolov3-spp.cfg --weights yolov3-spp.weights

    Pretrained Weights

    Download from: https://drive.google.com/open?id=1LezFG5g3BCW6iYaV89B2i64cqEUZD7e0

    Darknet Conversion

    $ git clone https://github.com/ultralytics/yolov3 && cd yolov3
    
    # convert darknet cfg/weights to pytorch model
    $ python3  -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.weights')"
    Success: converted 'weights/yolov3-spp.weights' to 'converted.pt'
    
    # convert cfg/pytorch model to darknet weights
    $ python3  -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.pt')"
    Success: converted 'weights/yolov3-spp.pt' to 'converted.weights'

    mAP

    python3 test.py --weights ... --cfg ...
    • mAP@0.5 run at --nms-thres 0.5, mAP@0.5...0.95 run at --nms-thres 0.7
    • YOLOv3-SPP ultralytics is ultralytics68.pt with yolov3-spp.cfg
    • Darknet results: https://arxiv.org/abs/1804.02767
     SizeCOCO mAP
    @0.5...0.95
    COCO mAP
    @0.5
    YOLOv3-tiny
    YOLOv3
    YOLOv3-SPP
    YOLOv3-SPP ultralytics
    320 14.0
    28.7
    30.5
    35.4
    29.1
    51.8
    52.3
    54.3
    YOLOv3-tiny
    YOLOv3
    YOLOv3-SPP
    YOLOv3-SPP ultralytics
    416 16.0
    31.2
    33.9
    39.0
    33.0
    55.4
    56.9
    59.2
    YOLOv3-tiny
    YOLOv3
    YOLOv3-SPP
    YOLOv3-SPP ultralytics
    512 16.6
    32.7
    35.6
    40.3
    34.9
    57.7
    59.5
    60.6
    YOLOv3-tiny
    YOLOv3
    YOLOv3-SPP
    YOLOv3-SPP ultralytics
    608 16.6
    33.1
    37.0
    40.9
    35.4
    58.2
    60.7
    60.9
    $ python3 test.py --save-json --img-size 608 --nms-thres 0.5 --weights ultralytics68.pt
    
    Namespace(batch_size=16, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data='data/coco.data', device='1', img_size=608, iou_thres=0.5, nms_thres=0.7, save_json=True, weights='ultralytics68.pt')
    Using CUDA device0 _CudaDeviceProperties(name='GeForce RTX 2080 Ti', total_memory=11019MB)
    
                   Class    Images   Targets         P         R   mAP@0.5        F1: 100%|███████████████████████████████████████████████████████████████████████████████████| 313/313 [09:46<00:00,  1.09it/s]
                     all     5e+03  3.58e+04    0.0823     0.798     0.595     0.145
                  person     5e+03  1.09e+04    0.0999     0.903     0.771      0.18
                 bicycle     5e+03       316    0.0491     0.782      0.56    0.0925
                     car     5e+03  1.67e+03    0.0552     0.845     0.646     0.104
              motorcycle     5e+03       391      0.11     0.847     0.704     0.194
                airplane     5e+03       131     0.099     0.947     0.878     0.179
                     bus     5e+03       261     0.142     0.874     0.825     0.244
                   train     5e+03       212     0.152     0.863     0.806     0.258
                   truck     5e+03       352    0.0849     0.682     0.514     0.151
                    boat     5e+03       475    0.0498     0.787     0.504    0.0937
           traffic light     5e+03       516    0.0304     0.752     0.516    0.0584
            fire hydrant     5e+03        83     0.144     0.916     0.882     0.248
               stop sign     5e+03        84    0.0833     0.917     0.809     0.153
           parking meter     5e+03        59    0.0607     0.695     0.611     0.112
                   bench     5e+03       473    0.0294     0.685     0.363    0.0564
                    bird     5e+03       469    0.0521     0.716     0.524    0.0972
                     cat     5e+03       195     0.252     0.908      0.78     0.395
                     dog     5e+03       223     0.192     0.883     0.829     0.315
                   horse     5e+03       305     0.121     0.911     0.843     0.214
                   sheep     5e+03       321     0.114     0.854     0.724     0.201
                     cow     5e+03       384     0.105     0.849     0.695     0.187
                elephant     5e+03       284     0.184     0.944     0.912     0.308
                    bear     5e+03        53     0.358     0.925     0.875     0.516
                   zebra     5e+03       277     0.176     0.935     0.858     0.297
                 giraffe     5e+03       170     0.171     0.959     0.892      0.29
                backpack     5e+03       384    0.0426     0.708     0.392    0.0803
                umbrella     5e+03       392    0.0672     0.878      0.65     0.125
                 handbag     5e+03       483    0.0238     0.629     0.242    0.0458
                     tie     5e+03       297    0.0419     0.805     0.599    0.0797
                suitcase     5e+03       310    0.0823     0.855     0.628      0.15
                 frisbee     5e+03       109     0.126     0.872     0.796     0.221
                    skis     5e+03       282    0.0473     0.748     0.454     0.089
               snowboard     5e+03        92    0.0579     0.804     0.559     0.108
             sports ball     5e+03       236     0.057     0.733     0.622     0.106
                    kite     5e+03       399     0.087     0.852     0.645     0.158
            baseball bat     5e+03       125    0.0496     0.776     0.603    0.0932
          baseball glove     5e+03       139    0.0511     0.734     0.563    0.0956
              skateboard     5e+03       218    0.0655     0.844      0.73     0.122
               surfboard     5e+03       266    0.0709     0.827     0.651     0.131
           tennis racket     5e+03       183    0.0694     0.858     0.759     0.128
                  bottle     5e+03       966    0.0484     0.812     0.513    0.0914
              wine glass     5e+03       366    0.0735     0.738     0.543     0.134
                     cup     5e+03       897    0.0637     0.788     0.538     0.118
                    fork     5e+03       234    0.0411     0.662     0.487    0.0774
                   knife     5e+03       291    0.0334     0.557     0.292    0.0631
                   spoon     5e+03       253    0.0281     0.621     0.307    0.0537
                    bowl     5e+03       620    0.0624     0.795     0.514     0.116
                  banana     5e+03       371     0.052      0.83      0.41    0.0979
                   apple     5e+03       158    0.0293     0.741     0.262    0.0564
                sandwich     5e+03       160    0.0913     0.725     0.522     0.162
                  orange     5e+03       189    0.0382     0.688      0.32    0.0723
                broccoli     5e+03       332    0.0513      0.88     0.445     0.097
                  carrot     5e+03       346    0.0398     0.766     0.362    0.0757
                 hot dog     5e+03       164    0.0958     0.646     0.494     0.167
                   pizza     5e+03       224    0.0886     0.875     0.699     0.161
                   donut     5e+03       237    0.0925     0.827      0.64     0.166
                    cake     5e+03       241    0.0658      0.71     0.539      0.12
                   chair     5e+03  1.62e+03    0.0432     0.793     0.489    0.0819
                   couch     5e+03       236     0.118     0.801     0.584     0.205
            potted plant     5e+03       431    0.0373     0.852     0.505    0.0714
                     bed     5e+03       195     0.149     0.846     0.693     0.253
            dining table     5e+03       634    0.0546      0.82      0.49     0.102
                  toilet     5e+03       179     0.161      0.95      0.81     0.275
                      tv     5e+03       257    0.0922     0.903      0.79     0.167
                  laptop     5e+03       237     0.127     0.869     0.744     0.222
                   mouse     5e+03        95    0.0648     0.863     0.732      0.12
                  remote     5e+03       241    0.0436     0.788     0.535    0.0827
                keyboard     5e+03       117    0.0668     0.923     0.755     0.125
              cell phone     5e+03       291    0.0364     0.704     0.436    0.0692
               microwave     5e+03        88     0.154     0.841     0.743     0.261
                    oven     5e+03       142    0.0618     0.803     0.576     0.115
                 toaster     5e+03        11    0.0565     0.636     0.191     0.104
                    sink     5e+03       211    0.0439     0.853     0.544    0.0835
            refrigerator     5e+03       107    0.0791     0.907     0.742     0.145
                    book     5e+03  1.08e+03    0.0399     0.667     0.233    0.0753
                   clock     5e+03       292    0.0542     0.836     0.733     0.102
                    vase     5e+03       353    0.0675     0.799     0.591     0.125
                scissors     5e+03        56    0.0397      0.75     0.461    0.0755
              teddy bear     5e+03       245    0.0995     0.882     0.669     0.179
              hair drier     5e+03        11   0.00508    0.0909    0.0475   0.00962
              toothbrush     5e+03        77    0.0371      0.74     0.418    0.0706
    
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.409
     Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.600
     Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.446
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.243
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.450
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.514
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.326
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.536
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.593
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.422
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.640
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.707

    Reproduce Our Results

    This command trains yolov3-spp.cfg from scratch to our mAP above. Training takes about one week on a 2080Ti.

    $ python3 train.py --weights '' --cfg yolov3-spp.cfg --epochs 273 --batch 16 --accum 4 --multi --pre

    Reproduce Our Environment

    To access an up-to-date working environment (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled), consider a:

    Citation

    DOI

    Contact

    Issues should be raised directly in the repository. For additional questions or comments please email Glenn Jocher at glenn.jocher@ultralytics.com or visit us at https://contact.ultralytics.com.

  • 相关阅读:
    arcgis api for js入门开发系列二十打印地图的那些事
    arcgis api 3.x for js 入门开发系列十九图层在线编辑
    arcgis api 3.x for js 入门开发系列十八风向流动图(附源码下载)
    influxDB 0.9 C# 读写类
    [InfluxDB] 安装与配置
    分布式,集群,冗余的理解
    CentOS 7.0系统安装配置图解教程
    InfluxDB学习之InfluxDB的基本操作| Linux大学
    InfluxDB v1.6.4 下载
    InfluxDB中文文档
  • 原文地址:https://www.cnblogs.com/2008nmj/p/12049181.html
Copyright © 2011-2022 走看看