zoukankan      html  css  js  c++  java
  • yolov3 train.py

    train.py //只需要看if __name__ == '__main__'之後的代碼就可以了

    import argparse
    
    import torch.distributed as dist
    import torch.optim as optim
    import torch.optim.lr_scheduler as lr_scheduler
    
    import test  # import test.py to get mAP after each epoch
    from models import *
    from utils.datasets import *
    from utils.utils import *
    
    mixed_precision = True
    try:  # Mixed precision training(混合精度训练) https://github.com/NVIDIA/apex
        from apex import amp
    except:
        mixed_precision = False  # not installed
    
    wdir = 'weights' + os.sep  # weights dir權重路徑
    last = wdir + 'last.pt'
    best = wdir + 'best.pt'
    results_file = 'results.txt'
    
    # Hyperparameters超参数 (results68: 59.2 mAP@0.5 yolov3-spp-416) https://github.com/ultralytics/yolov3/issues/310
    
    hyp = {'giou': 3.54,  # giou loss gain
           'cls': 37.4,  # cls loss gain
           'cls_pw': 1.0,  # cls BCELoss positive_weight
           'obj': 64.3,  # obj loss gain (*=img_size/416 if img_size != 416)
           'obj_pw': 1.0,  # obj BCELoss positive_weight
           'iou_t': 0.225,  # iou training threshold
           'lr0': 0.00579,  # initial learning rate (SGD=1E-3, Adam=9E-5)
           'lrf': -4.,  # final LambdaLR learning rate = lr0 * (10 ** lrf)
           'momentum': 0.937,  # SGD momentum
           'weight_decay': 0.000484,  # optimizer weight decay
           'fl_gamma': 0.5,  # focal loss gamma
           'hsv_h': 0.0138,  # image HSV-Hue augmentation (fraction)
           'hsv_s': 0.678,  # image HSV-Saturation augmentation (fraction)
           'hsv_v': 0.36,  # image HSV-Value augmentation (fraction)
           'degrees': 1.98,  # image rotation (+/- deg)
           'translate': 0.05,  # image translation (+/- fraction)
           'scale': 0.05,  # image scale (+/- gain)
           'shear': 0.641}  # image shear (+/- deg)
    
    # Overwrite hyp with hyp*.txt (optional)
    f = glob.glob('hyp*.txt')
    if f:
        print('Using %s' % f[0])
        for k, v in zip(hyp.keys(), np.loadtxt(f[0])):
            hyp[k] = v
    
    
    def train():
        cfg = opt.cfg
        data = opt.data
        img_size = opt.img_size
        epochs = 1 if opt.prebias else opt.epochs  # 500200 batches at bs 64, 117263 images = 273 epochs
        batch_size = opt.batch_size
        accumulate = opt.accumulate  # effective bs = batch_size * accumulate = 16 * 4 = 64
        weights = opt.weights  # initial training weights
    
        if 'pw' not in opt.arc:  # remove BCELoss positive weights
            hyp['cls_pw'] = 1.
            hyp['obj_pw'] = 1.
    
        # Initialize
        init_seeds()
        if opt.multi_scale:
            img_sz_min = round(img_size / 32 / 1.5)
            img_sz_max = round(img_size / 32 * 1.5)
            img_size = img_sz_max * 32  # initiate with maximum multi_scale size
            print('Using multi-scale %g - %g' % (img_sz_min * 32, img_size))
    
        # Configure run
        data_dict = parse_data_cfg(data)
        train_path = data_dict['train']
        test_path = data_dict['valid']
        nc = int(data_dict['classes'])  # number of classes
    
        # Remove previous results
        for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
            os.remove(f)
    
        # Initialize model
        model = Darknet(cfg, arc=opt.arc).to(device)
    
        # Optimizer
        pg0, pg1 = [], []  # optimizer parameter groups
        for k, v in dict(model.named_parameters()).items():
            if 'Conv2d.weight' in k:
                pg1 += [v]  # parameter group 1 (apply weight_decay)
            else:
                pg0 += [v]  # parameter group 0
    
        if opt.adam:
            optimizer = optim.Adam(pg0, lr=hyp['lr0'])
            # optimizer = AdaBound(pg0, lr=hyp['lr0'], final_lr=0.1)
        else:
            optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
        optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
        del pg0, pg1
    
        # https://github.com/alphadl/lookahead.pytorch
        # optimizer = torch_utils.Lookahead(optimizer, k=5, alpha=0.5)
    
        cutoff = -1  # backbone reaches to cutoff layer
        start_epoch = 0
        best_fitness = float('inf')
        attempt_download(weights)
        if weights.endswith('.pt'):  # pytorch format
            # possible weights are '*.pt', 'yolov3-spp.pt', 'yolov3-tiny.pt' etc.
            chkpt = torch.load(weights, map_location=device)
    
            # load model
            try:
                chkpt['model'] = {k: v for k, v in chkpt['model'].items() if model.state_dict()[k].numel() == v.numel()}
                model.load_state_dict(chkpt['model'], strict=False)
                # model.load_state_dict(chkpt['model'])
            except KeyError as e:
                s = "%s is not compatible with %s. Specify --weights '' or specify a --cfg compatible with %s. " 
                    "See https://github.com/ultralytics/yolov3/issues/657" % (opt.weights, opt.cfg, opt.weights)
                raise KeyError(s) from e
    
            # load optimizer
            if chkpt['optimizer'] is not None:
                optimizer.load_state_dict(chkpt['optimizer'])
                best_fitness = chkpt['best_fitness']
    
            # load results
            if chkpt.get('training_results') is not None:
                with open(results_file, 'w') as file:
                    file.write(chkpt['training_results'])  # write results.txt
    
            start_epoch = chkpt['epoch'] + 1
            del chkpt
    
        elif len(weights) > 0:  # darknet format
            # possible weights are '*.weights', 'yolov3-tiny.conv.15',  'darknet53.conv.74' etc.
            cutoff = load_darknet_weights(model, weights)
    
        if opt.transfer or opt.prebias:  # transfer learning edge (yolo) layers
            nf = int(model.module_defs[model.yolo_layers[0] - 1]['filters'])  # yolo layer size (i.e. 255)
    
            if opt.prebias:
                for p in optimizer.param_groups:
                    # lower param count allows more aggressive training settings: i.e. SGD ~0.1 lr0, ~0.9 momentum
                    p['lr'] *= 100  # lr gain
                    if p.get('momentum') is not None:  # for SGD but not Adam
                        p['momentum'] *= 0.9
    
            for p in model.parameters():
                if opt.prebias and p.numel() == nf:  # train (yolo biases)
                    p.requires_grad = True
                elif opt.transfer and p.shape[0] == nf:  # train (yolo biases+weights)
                    p.requires_grad = True
                else:  # freeze layer
                    p.requires_grad = False
    
        # Scheduler https://github.com/ultralytics/yolov3/issues/238
        # lf = lambda x: 1 - x / epochs  # linear ramp to zero
        # lf = lambda x: 10 ** (hyp['lrf'] * x / epochs)  # exp ramp
        # lf = lambda x: 1 - 10 ** (hyp['lrf'] * (1 - x / epochs))  # inverse exp ramp
        # scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
        # scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=range(59, 70, 1), gamma=0.8)  # gradual fall to 0.1*lr0
        scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[round(opt.epochs * x) for x in [0.8, 0.9]], gamma=0.1)
        scheduler.last_epoch = start_epoch - 1
    
        # # Plot lr schedule
        # y = []
        # for _ in range(epochs):
        #     scheduler.step()
        #     y.append(optimizer.param_groups[0]['lr'])
        # plt.plot(y, label='LambdaLR')
        # plt.xlabel('epoch')
        # plt.ylabel('LR')
        # plt.tight_layout()
        # plt.savefig('LR.png', dpi=300)
    
        # Mixed precision training https://github.com/NVIDIA/apex
        if mixed_precision:
            model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)
    
        # Initialize distributed training
        if device.type != 'cpu' and torch.cuda.device_count() > 1:
            dist.init_process_group(backend='nccl',  # 'distributed backend'
                                    init_method='tcp://127.0.0.1:9999',  # distributed training init method
                                    world_size=1,  # number of nodes for distributed training
                                    rank=0)  # distributed training node rank
            model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
            model.yolo_layers = model.module.yolo_layers  # move yolo layer indices to top level
    
        # Dataset
        dataset = LoadImagesAndLabels(train_path, img_size, batch_size,
                                      augment=True,
                                      hyp=hyp,  # augmentation hyperparameters
                                      rect=opt.rect,  # rectangular training
                                      image_weights=opt.img_weights,
                                      cache_labels=epochs > 10,
                                      cache_images=opt.cache_images and not opt.prebias)
    
        # Dataloader
        batch_size = min(batch_size, len(dataset))
        nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
        print('Using %g dataloader workers' % nw)
        dataloader = torch.utils.data.DataLoader(dataset,
                                                 batch_size=batch_size,
                                                 num_workers=nw,
                                                 shuffle=not opt.rect,  # Shuffle=True unless rectangular training is used
                                                 pin_memory=True,
                                                 collate_fn=dataset.collate_fn)
    
        # Test Dataloader
        if not opt.prebias:
            testloader = torch.utils.data.DataLoader(LoadImagesAndLabels(test_path, img_size, batch_size, hyp=hyp,
                                                                         cache_labels=True,
                                                                         cache_images=opt.cache_images),
                                                     batch_size=batch_size,
                                                     num_workers=nw,
                                                     pin_memory=True,
                                                     collate_fn=dataset.collate_fn)
    
        # Start training
        nb = len(dataloader)
        model.nc = nc  # attach number of classes to model
        model.arc = opt.arc  # attach yolo architecture
        model.hyp = hyp  # attach hyperparameters to model
        model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device)  # attach class weights
        torch_utils.model_info(model, report='summary')  # 'full' or 'summary'
        maps = np.zeros(nc)  # mAP per class
        # torch.autograd.set_detect_anomaly(True)
        results = (0, 0, 0, 0, 0, 0, 0)  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
        t0 = time.time()
        print('Starting %s for %g epochs...' % ('prebias' if opt.prebias else 'training', epochs))
        for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
            model.train()
            print(('
    ' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
    
            # Freeze backbone at epoch 0, unfreeze at epoch 1 (optional)
            freeze_backbone = False
            if freeze_backbone and epoch < 2:
                for name, p in model.named_parameters():
                    if int(name.split('.')[1]) < cutoff:  # if layer < 75
                        p.requires_grad = False if epoch == 0 else True
    
            # Update image weights (optional)
            if dataset.image_weights:
                w = model.class_weights.cpu().numpy() * (1 - maps) ** 2  # class weights
                image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
                dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n)  # rand weighted idx
    
            mloss = torch.zeros(4).to(device)  # mean losses
            pbar = tqdm(enumerate(dataloader), total=nb)  # progress bar
            for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
                ni = i + nb * epoch  # number integrated batches (since train start)
                imgs = imgs.to(device)
                targets = targets.to(device)
    
                # Multi-Scale training
                if opt.multi_scale:
                    if ni / accumulate % 10 == 0:  #  adjust (67% - 150%) every 10 batches
                        img_size = random.randrange(img_sz_min, img_sz_max + 1) * 32
                    sf = img_size / max(imgs.shape[2:])  # scale factor
                    if sf != 1:
                        ns = [math.ceil(x * sf / 32.) * 32 for x in imgs.shape[2:]]  # new shape (stretched to 32-multiple)
                        imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
    
                # Plot images with bounding boxes
                if ni == 0:
                    fname = 'train_batch%g.jpg' % i
                    plot_images(imgs=imgs, targets=targets, paths=paths, fname=fname)
                    if tb_writer:
                        tb_writer.add_image(fname, cv2.imread(fname)[:, :, ::-1], dataformats='HWC')
    
                # Hyperparameter burn-in
                # n_burn = nb - 1  # min(nb // 5 + 1, 1000)  # number of burn-in batches
                # if ni <= n_burn:
                #     for m in model.named_modules():
                #         if m[0].endswith('BatchNorm2d'):
                #             m[1].momentum = 1 - i / n_burn * 0.99  # BatchNorm2d momentum falls from 1 - 0.01
                #     g = (i / n_burn) ** 4  # gain rises from 0 - 1
                #     for x in optimizer.param_groups:
                #         x['lr'] = hyp['lr0'] * g
                #         x['weight_decay'] = hyp['weight_decay'] * g
    
                # Run model
                pred = model(imgs)
    
                # Compute loss
                loss, loss_items = compute_loss(pred, targets, model)
                if not torch.isfinite(loss):
                    print('WARNING: non-finite loss, ending training ', loss_items)
                    return results
    
                # Scale loss by nominal batch_size of 64
                loss *= batch_size / 64
    
                # Compute gradient
                if mixed_precision:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()
    
                # Accumulate gradient for x batches before optimizing
                if ni % accumulate == 0:
                    optimizer.step()
                    optimizer.zero_grad()
    
                # Print batch results
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0  # (GB)
                s = ('%10s' * 2 + '%10.3g' * 6) % (
                    '%g/%g' % (epoch, epochs - 1), '%.3gG' % mem, *mloss, len(targets), img_size)
                pbar.set_description(s)
    
                # end batch ------------------------------------------------------------------------------------------------
    
            # Update scheduler
            scheduler.step()
    
            # Process epoch results
            final_epoch = epoch + 1 == epochs
            if opt.prebias:
                print_model_biases(model)
            else:
                # Calculate mAP
                if not opt.notest or final_epoch:
                    with torch.no_grad():
                        results, maps = test.test(cfg,
                                                  data,
                                                  batch_size=batch_size,
                                                  img_size=opt.img_size,
                                                  model=model,
                                                  conf_thres=0.001 if final_epoch and epoch > 0 else 0.1,  # 0.1 for speed
                                                  save_json=final_epoch and epoch > 0 and 'coco.data' in data,
                                                  dataloader=testloader)
    
            # Write epoch results
            with open(results_file, 'a') as f:
                f.write(s + '%10.3g' * 7 % results + '
    ')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
            if len(opt.name) and opt.bucket and not opt.prebias:
                os.system('gsutil cp results.txt gs://%s/results%s.txt' % (opt.bucket, opt.name))
    
            # Write Tensorboard results
            if tb_writer:
                x = list(mloss) + list(results)
                titles = ['GIoU', 'Objectness', 'Classification', 'Train loss',
                          'Precision', 'Recall', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification']
                for xi, title in zip(x, titles):
                    tb_writer.add_scalar(title, xi, epoch)
    
            # Update best mAP
            fitness = sum(results[4:])  # total loss
            if fitness < best_fitness:
                best_fitness = fitness
    
            # Save training results
            save = (not opt.nosave) or (final_epoch and not opt.evolve) or opt.prebias
            if save:
                with open(results_file, 'r') as f:
                    # Create checkpoint
                    chkpt = {'epoch': epoch,
                             'best_fitness': best_fitness,
                             'training_results': f.read(),
                             'model': model.module.state_dict() if type(
                                 model) is nn.parallel.DistributedDataParallel else model.state_dict(),
                             'optimizer': None if final_epoch else optimizer.state_dict()}
    
                # Save last checkpoint
                torch.save(chkpt, last)
    
                # Save best checkpoint
                if best_fitness == fitness:
                    torch.save(chkpt, best)
    
                # Save backup every 10 epochs (optional)
                if epoch > 0 and epoch % 10 == 0:
                    torch.save(chkpt, wdir + 'backup%g.pt' % epoch)
    
                # Delete checkpoint
                del chkpt
    
            # end epoch ----------------------------------------------------------------------------------------------------
    
        # end training
        if len(opt.name) and not opt.prebias:
            fresults, flast, fbest = 'results%s.txt' % opt.name, 'last%s.pt' % opt.name, 'best%s.pt' % opt.name
            os.rename('results.txt', fresults)
            os.rename(wdir + 'last.pt', wdir + flast) if os.path.exists(wdir + 'last.pt') else None
            os.rename(wdir + 'best.pt', wdir + fbest) if os.path.exists(wdir + 'best.pt') else None
    
            # save to cloud
            if opt.bucket:
                os.system('gsutil cp %s %s gs://%s' % (fresults, wdir + flast, opt.bucket))
    
        plot_results()  # save as results.png
        print('%g epochs completed in %.3f hours.
    ' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        dist.destroy_process_group() if torch.cuda.device_count() > 1 else None
        torch.cuda.empty_cache()
    
        return results
    
    
    def prebias():
        # trains output bias layers for 1 epoch and creates new backbone
        if opt.prebias:
            a = opt.img_weights  # save settings
            opt.img_weights = False  # disable settings
    
            train()  # transfer-learn yolo biases for 1 epoch
            create_backbone(last)  # saved results as backbone.pt
    
            opt.weights = wdir + 'backbone.pt'  # assign backbone
            opt.prebias = False  # disable prebias
            opt.img_weights = a  # reset settings
    
    
    if __name__ == '__main__':
        parser = argparse.ArgumentParser()
        parser.add_argument('--epochs', type=int, default=273)  # 500200 batches at bs 16, 117263 images = 273 epochs
        parser.add_argument('--batch-size', type=int, default=16)  # effective bs = batch_size * accumulate = 16 * 4 = 64
        parser.add_argument('--accumulate', type=int, default=4, help='batches to accumulate before optimizing')
        parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='cfg file path')
        parser.add_argument('--data', type=str, default='data/coco.data', help='*.data file path')
        parser.add_argument('--multi-scale', action='store_true', help='adjust (67% - 150%) img_size every 10 batches')
        parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)')
        parser.add_argument('--rect', action='store_true', help='rectangular training')
        parser.add_argument('--resume', action='store_true', help='resume training from last.pt')
        parser.add_argument('--transfer', action='store_true', help='transfer learning')
        parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
        parser.add_argument('--notest', action='store_true', help='only test final epoch')
        parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
        parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
        parser.add_argument('--img-weights', action='store_true', help='select training images by weight')
        parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
        parser.add_argument('--weights', type=str, default='weights/ultralytics68.pt', help='initial weights')
        parser.add_argument('--arc', type=str, default='default', help='yolo architecture')  # defaultpw, uCE, uBCE
        parser.add_argument('--prebias', action='store_true', help='transfer-learn yolo biases prior to training')
        parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
        parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1 or cpu)')
        parser.add_argument('--adam', action='store_true', help='use adam optimizer')
        parser.add_argument('--var', type=float, help='debug variable')
        opt = parser.parse_args()
        opt.weights = last if opt.resume else opt.weights
        print(opt)
        device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
        if device.type == 'cpu':
            mixed_precision = False
    
        # scale hyp['obj'] by img_size (evolved at 416)
        hyp['obj'] *= opt.img_size / 416.
    
        tb_writer = None
        if not opt.evolve:  # Train normally
            try:
                # Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/
                from torch.utils.tensorboard import SummaryWriter
    
                tb_writer = SummaryWriter()
            except:
                pass
    
            prebias()  # optional
            train()  # train normally
    
        else:  # Evolve hyperparameters (optional)
            opt.notest = True  # only test final epoch
            opt.nosave = True  # only save final checkpoint
            if opt.bucket:
                os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket)  # download evolve.txt if exists
    
            for _ in range(1):  # generations to evolve
                if os.path.exists('evolve.txt'):  # if evolve.txt exists: select best hyps and mutate
                    # Select parent(s)
                    x = np.loadtxt('evolve.txt', ndmin=2)
                    parent = 'weighted'  # parent selection method: 'single' or 'weighted'
                    if parent == 'single' or len(x) == 1:
                        x = x[fitness(x).argmax()]
                    elif parent == 'weighted':  # weighted combination
                        n = min(10, x.shape[0])  # number to merge
                        x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                        w = fitness(x) - fitness(x).min()  # weights
                        x = (x[:n] * w.reshape(n, 1)).sum(0) / w.sum()  # new parent
                    for i, k in enumerate(hyp.keys()):
                        hyp[k] = x[i + 7]
    
                    # Mutate
                    np.random.seed(int(time.time()))
                    s = [.2, .2, .2, .2, .2, .2, .2, .0, .02, .2, .2, .2, .2, .2, .2, .2, .2, .2]  # sigmas
                    for i, k in enumerate(hyp.keys()):
                        x = (np.random.randn(1) * s[i] + 1) ** 2.0  # plt.hist(x.ravel(), 300)
                        hyp[k] *= float(x)  # vary by sigmas
    
                # Clip to limits
                keys = ['lr0', 'iou_t', 'momentum', 'weight_decay', 'hsv_s', 'hsv_v', 'translate', 'scale', 'fl_gamma']
                limits = [(1e-5, 1e-2), (0.00, 0.70), (0.60, 0.98), (0, 0.001), (0, .9), (0, .9), (0, .9), (0, .9), (0, 3)]
                for k, v in zip(keys, limits):
                    hyp[k] = np.clip(hyp[k], v[0], v[1])
    
                # Train mutation
                prebias()
                results = train()
    
                # Write mutation results
                print_mutation(hyp, results, opt.bucket)
    
                # Plot results
                # plot_evolution_results(hyp)
  • 相关阅读:
    pandas中expand的作用
    pandas中DataFrame的stack()、unstack()和pivot()方法的对比
    Django在windows下用Apache 部署
    pandas分组统计
    DataFrame中的空值处理
    Django signals 监控模型对象字段值的变化
    django+uwsgi+daphne+supervisor生产环境部署
    Django-Channels使用和部署
    Django使用Channels实现WebSocket的方法
    python 操作es
  • 原文地址:https://www.cnblogs.com/2008nmj/p/12108499.html
Copyright © 2011-2022 走看看