zoukankan      html  css  js  c++  java
  • Regularization and model selection

    Suppose we are trying select among several different models for a learning problem.For instance, we might be using a polynomial regression model hθ(x) = g(θ0 + θ1x + θ2x2 + · · · + θkxk ),and wish to decide if k should be 0, 1, . . . , or 10. How can we automatically select a model that represents a good tradeoff between the twin evils of bias and variance?Alternatively, suppose we want to automatically choose the bandwidth parameter τ for locally weighted regression, or the parameter C for our l1-regularized SVM. How can we do that?

    假设我们正在努力为某个学习问题从几个不同的模型做选择。例如,我们可能正在使用一种多项式回归模型hθ(x) = g(θ0 + θ1x + θ2x2 + · · · + θkxk ),并且希望决定k是应该为0,1,...,或者10。那么我们怎么自动选择一个好的模型从而实现偏差和过拟合之间好的权衡?或者,假设我们想为自动为局部加权回归选择带宽参数τ,或者为我们的l1-正规化SVM选择参数C。我们怎么做到这一点呢?

    For the sake of concreteness, in these notes we assume we have some finite set of models M = {M1, . . . , Md} that we’re trying to select among. For instance, in our first example above, the model Mi would be an i-th order polynomial regression model. (The generalization to infinite M is not hard.2 )

    为了具体地考虑,在这些笔记中我们假设我们有一些有限的模型M={M1,...,Md},我们要从中选择。

  • 相关阅读:
    摘录一篇 这两天对SSO的认识
    获取文本框中的行
    在窗体数据源中过滤记录
    linux下访问windows的共享
    使用Form作Lookup其窗体位置设置
    窗体数据源连接技巧
    给动态创建的控件指定事件
    Object的使用技巧
    显示进度条SysOperationProgress
    如何解决下载的CHM文件无法显示网页问题
  • 原文地址:https://www.cnblogs.com/2008nmj/p/8505635.html
Copyright © 2011-2022 走看看