zoukankan      html  css  js  c++  java
  • Regularization and model selection

    Suppose we are trying select among several different models for a learning problem.For instance, we might be using a polynomial regression model hθ(x) = g(θ0 + θ1x + θ2x2 + · · · + θkxk ),and wish to decide if k should be 0, 1, . . . , or 10. How can we automatically select a model that represents a good tradeoff between the twin evils of bias and variance?Alternatively, suppose we want to automatically choose the bandwidth parameter τ for locally weighted regression, or the parameter C for our l1-regularized SVM. How can we do that?

    假设我们正在努力为某个学习问题从几个不同的模型做选择。例如,我们可能正在使用一种多项式回归模型hθ(x) = g(θ0 + θ1x + θ2x2 + · · · + θkxk ),并且希望决定k是应该为0,1,...,或者10。那么我们怎么自动选择一个好的模型从而实现偏差和过拟合之间好的权衡?或者,假设我们想为自动为局部加权回归选择带宽参数τ,或者为我们的l1-正规化SVM选择参数C。我们怎么做到这一点呢?

    For the sake of concreteness, in these notes we assume we have some finite set of models M = {M1, . . . , Md} that we’re trying to select among. For instance, in our first example above, the model Mi would be an i-th order polynomial regression model. (The generalization to infinite M is not hard.2 )

    为了具体地考虑,在这些笔记中我们假设我们有一些有限的模型M={M1,...,Md},我们要从中选择。

  • 相关阅读:
    js添加和删除class
    GIT回滚master分支到指定tag版本
    table添加正确的样式
    iframe父页面与子页面赋值
    关于日期转换
    vue-cli脚手架安装
    npm手册
    linear-gradient常用实现效果
    【转载】说说JSON和JSONP,也许你会豁然开朗,含jQuery用例
    雷霄骅走了
  • 原文地址:https://www.cnblogs.com/2008nmj/p/8505635.html
Copyright © 2011-2022 走看看