zoukankan      html  css  js  c++  java
  • PyTorch入门教程

    https://www.zhihu.com/question/55720139

    Deep Learning with PyTorch: A 60 Minute Blitz

    AuthorSoumith Chintala

    Goal of this tutorial:

    • Understand PyTorch’s Tensor library and neural networks at a high level.
    • Train a small neural network to classify images

    This tutorial assumes that you have a basic familiarity of numpy

    Note

    Make sure you have the torch and torchvision packages installed.

     

    What is PyTorch?

     

    Neural Networks

     

    Training a classifier

     

    Optional: Data Parallelism

    What is PyTorch?

    It’s a Python based scientific computing package targeted at two sets of audiences:

    • A replacement for NumPy to use the power of GPUs
    • a deep learning research platform that provides maximum flexibility and speed

    Getting Started

    Tensors

    Tensors are similar to NumPy’s ndarrays, with the addition being that Tensors can also be used on a GPU to accelerate computing.

    from __future__ import print_function
    import torch

    Construct a 5x3 matrix, uninitialized:

    x = torch.empty(5, 3)
    print(x)

    Out:

    tensor(1.00000e-04 *
           [[-0.0000,  0.0000,  1.5135],
            [ 0.0000,  0.0000,  0.0000],
            [ 0.0000,  0.0000,  0.0000],
            [ 0.0000,  0.0000,  0.0000],
            [ 0.0000,  0.0000,  0.0000]])

    Construct a randomly initialized matrix:

    x = torch.rand(5, 3)
    print(x)

    Out:

    tensor([[ 0.6291,  0.2581,  0.6414],
            [ 0.9739,  0.8243,  0.2276],
            [ 0.4184,  0.1815,  0.5131],
            [ 0.5533,  0.5440,  0.0718],
            [ 0.2908,  0.1850,  0.5297]])

    Construct a matrix filled zeros and of dtype long:

    x = torch.zeros(5, 3, dtype=torch.long)
    print(x)

    Out:

    tensor([[ 0,  0,  0],
            [ 0,  0,  0],
            [ 0,  0,  0],
            [ 0,  0,  0],
            [ 0,  0,  0]])

    Construct a tensor directly from data:

    x = torch.tensor([5.5, 3])
    print(x)

    Out:

    tensor([ 5.5000,  3.0000])

    or create a tensor basing on existing tensor. These methods will reuse properties of the input tensor, e.g. dtype, unless new values are provided by user

    x = x.new_ones(5, 3, dtype=torch.double)      # new_* methods take in sizes
    print(x)
     
    x = torch.randn_like(x, dtype=torch.float)    # override dtype!
    print(x)                                      # result has the same size

    Out:

    tensor([[ 1.,  1.,  1.],
            [ 1.,  1.,  1.],
            [ 1.,  1.,  1.],
            [ 1.,  1.,  1.],
            [ 1.,  1.,  1.]], dtype=torch.float64)
    tensor([[-0.2183,  0.4477, -0.4053],
            [ 1.7353, -0.0048,  1.2177],
            [-1.1111,  1.0878,  0.9722],
            [-0.7771, -0.2174,  0.0412],
            [-2.1750,  1.3609, -0.3322]])

    Get its size:

    print(x.size())

    Out:

    torch.Size([5, 3])

    Note

    torch.Size is in fact a tuple, so it supports all tuple operations.

    Operations

    There are multiple syntaxes for operations. In the following example, we will take a look at the addition operation.

    Addition: syntax 1

    y = torch.rand(5, 3)
    print(x + y)

    Out:

    tensor([[-0.1859,  1.3970,  0.5236],
            [ 2.3854,  0.0707,  2.1970],
            [-0.3587,  1.2359,  1.8951],
            [-0.1189, -0.1376,  0.4647],
            [-1.8968,  2.0164,  0.1092]])

    Addition: syntax 2

    print(torch.add(x, y))

    Out:

    tensor([[-0.1859,  1.3970,  0.5236],
            [ 2.3854,  0.0707,  2.1970],
            [-0.3587,  1.2359,  1.8951],
            [-0.1189, -0.1376,  0.4647],
            [-1.8968,  2.0164,  0.1092]])

    Addition: providing an output tensor as argument

    result = torch.empty(5, 3)
    torch.add(x, y, out=result)
    print(result)

    Out:

    tensor([[-0.1859,  1.3970,  0.5236],
            [ 2.3854,  0.0707,  2.1970],
            [-0.3587,  1.2359,  1.8951],
            [-0.1189, -0.1376,  0.4647],
            [-1.8968,  2.0164,  0.1092]])

    Addition: in-place

    # adds x to y
    y.add_(x)
    print(y)

    Out:

    tensor([[-0.1859,  1.3970,  0.5236],
            [ 2.3854,  0.0707,  2.1970],
            [-0.3587,  1.2359,  1.8951],
            [-0.1189, -0.1376,  0.4647],
            [-1.8968,  2.0164,  0.1092]])

    Note

    Any operation that mutates a tensor in-place is post-fixed with an _. For example: x.copy_(y), x.t_(), will change x.

    You can use standard NumPy-like indexing with all bells and whistles!

    print(x[:, 1])

    Out:

    tensor([ 0.4477, -0.0048,  1.0878, -0.2174,  1.3609])

    Resizing: If you want to resize/reshape tensor, you can use torch.view:

    x = torch.randn(4, 4)
    y = x.view(16)
    z = x.view(-1, 8)  # the size -1 is inferred from other dimensions
    print(x.size(), y.size(), z.size())

    Out:

    torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])

    If you have a one element tensor, use .item() to get the value as a Python number

    x = torch.randn(1)
    print(x)
    print(x.item())

    Out:

    tensor([ 0.9422])
    0.9422121644020081

    Read later:

    100+ Tensor operations, including transposing, indexing, slicing, mathematical operations, linear algebra, random numbers, etc., are described here.

    NumPy Bridge

    Converting a Torch Tensor to a NumPy array and vice versa is a breeze.

    The Torch Tensor and NumPy array will share their underlying memory locations, and changing one will change the other.

    Converting a Torch Tensor to a NumPy Array

    a = torch.ones(5)
    print(a)

    Out:

    tensor([ 1.,  1.,  1.,  1.,  1.])
    b = a.numpy()
    print(b)

    Out:

    [1. 1. 1. 1. 1.]

    See how the numpy array changed in value.

    a.add_(1)
    print(a)
    print(b)

    Out:

    tensor([ 2.,  2.,  2.,  2.,  2.])
    [2. 2. 2. 2. 2.]

    Converting NumPy Array to Torch Tensor

    See how changing the np array changed the Torch Tensor automatically

    import numpy as np
    a = np.ones(5)
    b = torch.from_numpy(a)
    np.add(a, 1, out=a)
    print(a)
    print(b)

    Out:

    [2. 2. 2. 2. 2.]
    tensor([ 2.,  2.,  2.,  2.,  2.], dtype=torch.float64)

    All the Tensors on the CPU except a CharTensor support converting to NumPy and back.

    CUDA Tensors

    Tensors can be moved onto any device using the .to method.

    # let us run this cell only if CUDA is available
    # We will use ``torch.device`` objects to move tensors in and out of GPU
    if torch.cuda.is_available():
        device = torch.device("cuda")          # a CUDA device object
        y = torch.ones_like(x, device=device)  # directly create a tensor on GPU
        x = x.to(device)                       # or just use strings ``.to("cuda")``
        z = x + y
        print(z)
        print(z.to("cpu", torch.double))       # ``.to`` can also change dtype together!

    Out:

    tensor([ 1.9422], device='cuda:0')
    tensor([ 1.9422], dtype=torch.float64)

    Total running time of the script: ( 0 minutes 0.057 seconds)

    Download Python sourcecode: tensor_tutorial.py

     

    Download Jupyternotebook: tensor_tutorial.ipynb

    Autograd: automatic differentiation

    Central to all neural networks in PyTorch is the autograd package. Let’s first briefly visit this, and we will then go to training our first neural network.

    The autograd package provides automatic differentiation for all operations on Tensors. It is a define-by-run framework, which means that your backprop is defined by how your code is run, and that every single iteration can be different.

    Let us see this in more simple terms with some examples.

    Tensor

    torch.Tensor is the central class of the package. If you set its attribute .requires_grad as True, it starts to track all operations on it. When you finish your computation you can call .backward() and have all the gradients computed automatically. The gradient for this tensor will be accumulated into .grad attribute.

    To stop a tensor from tracking history, you can call .detach() to detach it from the computation history, and to prevent future computation from being tracked.

    To prevent tracking history (and using memory), you can also wrap the code block in with torch.no_grad():. This can be particularly helpful when evaluating a model because the model may have trainable parameters with requires_grad=True, but we don’t need the gradients.

    There’s one more class which is very important for autograd implementation - a Function.

    Tensor and Function are interconnected and build up an acyclic graph, that encodes a complete history of computation. Each variable has a .grad_fn attribute that references a Function that has created the Tensor (except for Tensors created by the user - their grad_fn is None).

    If you want to compute the derivatives, you can call .backward() on a Tensor. If Tensor is a scalar (i.e. it holds a one element data), you don’t need to specify any arguments to backward(), however if it has more elements, you need to specify a gradient argument that is a tensor of matching shape.

    import torch

    Create a tensor and set requires_grad=True to track computation with it

    x = torch.ones(2, 2, requires_grad=True)
    print(x)

    Out:

    tensor([[ 1.,  1.],
            [ 1.,  1.]])

    Do an operation of tensor:

    y = x + 2
    print(y)

    Out:

    tensor([[ 3.,  3.],
            [ 3.,  3.]])

    y was created as a result of an operation, so it has a grad_fn.

    print(y.grad_fn)

    Out:

    <AddBackward0 object at 0x7fb9f73ea518>

    Do more operations on y

    z = y * y * 3
    out = z.mean()
     
    print(z, out)

    Out:

    tensor([[ 27.,  27.],
            [ 27.,  27.]]) tensor(27.)

    .requires_grad_( ... ) changes an existing Tensor’s requires_grad flag in-place. The input flag defaults to True if not given.

    a = torch.randn(2, 2)
    a = ((a * 3) / (a - 1))
    print(a.requires_grad)
    a.requires_grad_(True)
    print(a.requires_grad)
    b = (a * a).sum()
    print(b.grad_fn)

    Out:

    False
    True
    <SumBackward0 object at 0x7fb9f74f1a58>

    Gradients

    Let’s backprop now Because out contains a single scalar, out.backward() is equivalent to out.backward(torch.tensor(1)).

    out.backward()

    print gradients d(out)/dx

    print(x.grad)

    Out:

    tensor([[ 4.5000,  4.5000],
            [ 4.5000,  4.5000]])

    You should have got a matrix of 4.5. Let’s call the out Tensor “oo”. We have that o=14∑izio=14∑izi, zi=3(xi+2)2zi=3(xi+2)2 and zi∣∣xi=1=27zi|xi=1=27. Therefore, ∂o∂xi=32(xi+2)∂o∂xi=32(xi+2), hence ∂o∂xi∣∣xi=1=92=4.5∂o∂xi|xi=1=92=4.5.

    You can do many crazy things with autograd!

    x = torch.randn(3, requires_grad=True)
     
    y = x * 2
    while y.data.norm() < 1000:
        y = y * 2
     
    print(y)

    Out:

    tensor([-590.4467,   97.6760,  921.0221])
    gradients = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)
    y.backward(gradients)
     
    print(x.grad)

    Out:

    tensor([  51.2000,  512.0000,    0.0512])

    You can also stops autograd from tracking history on Tensors with requires_grad=True by wrapping the code block in with torch.no_grad():

    print(x.requires_grad)
    print((x ** 2).requires_grad)
     
    with torch.no_grad():
        print((x ** 2).requires_grad)

    Out:

    True
    True
    False

    Read Later:

    Documentation of autograd and Function is at http://pytorch.org/docs/autograd

    Total running time of the script: ( 0 minutes 0.138 seconds)

    Download Python sourcecode: autograd_tutorial.py

     

    Download Jupyternotebook: autograd_tutorial.ipynb

    Neural Networks

    Neural networks can be constructed using the torch.nn package.

    Now that you had a glimpse of autograd, nn depends on autograd to define models and differentiate them. An nn.Module contains layers, and a method forward(input)that returns the output.

    For example, look at this network that classifies digit images:

    convnet

    It is a simple feed-forward network. It takes the input, feeds it through several layers one after the other, and then finally gives the output.

    A typical training procedure for a neural network is as follows:

    • Define the neural network that has some learnable parameters (or weights)
    • Iterate over a dataset of inputs
    • Process input through the network
    • Compute the loss (how far is the output from being correct)
    • Propagate gradients back into the network’s parameters
    • Update the weights of the network, typically using a simple update rule:weight = weight - learning_rate * gradient

    Define the network

    Let’s define this network:

    import torch
    import torch.nn as nn
    import torch.nn.functional as F
     
     
    class Net(nn.Module):
     
        def __init__(self):
            super(Net, self).__init__()
            # 1 input image channel, 6 output channels, 5x5 square convolution
            # kernel
            self.conv1 = nn.Conv2d(1, 6, 5)
            self.conv2 = nn.Conv2d(6, 16, 5)
            # an affine operation: y = Wx + b
            self.fc1 = nn.Linear(16 * 5 * 5, 120)
            self.fc2 = nn.Linear(120, 84)
            self.fc3 = nn.Linear(84, 10)
     
        def forward(self, x):
            # Max pooling over a (2, 2) window
            x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
            # If the size is a square you can only specify a single number
            x = F.max_pool2d(F.relu(self.conv2(x)), 2)
            x = x.view(-1, self.num_flat_features(x))
            x = F.relu(self.fc1(x))
            x = F.relu(self.fc2(x))
            x = self.fc3(x)
            return x
     
        def num_flat_features(self, x):
            size = x.size()[1:]  # all dimensions except the batch dimension
            num_features = 1
            for s in size:
                num_features *= s
            return num_features
     
     
    net = Net()
    print(net)

    Out:

    Net(
      (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
      (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
      (fc1): Linear(in_features=400, out_features=120, bias=True)
      (fc2): Linear(in_features=120, out_features=84, bias=True)
      (fc3): Linear(in_features=84, out_features=10, bias=True)
    )

    You just have to define the forward function, and the backward function (where gradients are computed) is automatically defined for you using autograd. You can use any of the Tensor operations in the forward function.

    The learnable parameters of a model are returned by net.parameters()

    params = list(net.parameters())
    print(len(params))
    print(params[0].size())  # conv1's .weight

    Out:

    10
    torch.Size([6, 1, 5, 5])

    Let try a random 32x32 input Note: Expected input size to this net(LeNet) is 32x32. To use this net on MNIST dataset, please resize the images from the dataset to 32x32.

    input = torch.randn(1, 1, 32, 32)
    out = net(input)
    print(out)

    Out:

    tensor([[-0.0089, -0.0514,  0.0059,  0.1412, -0.1543,  0.0494, -0.0966,
             -0.1150, -0.0986, -0.1103]])

    Zero the gradient buffers of all parameters and backprops with random gradients:

    net.zero_grad()
    out.backward(torch.randn(1, 10))

    Note

    torch.nn only supports mini-batches. The entire torch.nn package only supports inputs that are a mini-batch of samples, and not a single sample.

    For example, nn.Conv2d will take in a 4D Tensor of nSamples x nChannels x Height x Width.

    If you have a single sample, just use input.unsqueeze(0) to add a fake batch dimension.

    Before proceeding further, let’s recap all the classes you’ve seen so far.

    Recap:

    • torch.Tensor - A multi-dimensional array with support for autograd operations like backward(). Also holds the gradient w.r.t. the tensor.
    • nn.Module - Neural network module. Convenient way of encapsulating parameters, with helpers for moving them to GPU, exporting, loading, etc.
    • nn.Parameter - A kind of Tensor, that is automatically registered as a parameter when assigned as an attribute to a Module.
    • autograd.Function - Implements forward and backward definitions of an autograd operation. Every Tensor operation, creates at least a single Function node, that connects to functions that created a Tensor and encodes its history.

    At this point, we covered:

    • Defining a neural network
    • Processing inputs and calling backward

    Still Left:

    • Computing the loss
    • Updating the weights of the network

    Loss Function

    A loss function takes the (output, target) pair of inputs, and computes a value that estimates how far away the output is from the target.

    There are several different loss functions under the nn package . A simple loss is: nn.MSELoss which computes the mean-squared error between the input and the target.

    For example:

    output = net(input)
    target = torch.arange(1, 11)  # a dummy target, for example
    target = target.view(1, -1)  # make it the same shape as output
    criterion = nn.MSELoss()
     
    loss = criterion(output, target)
    print(loss)

    Out:

    tensor(39.2273)

    Now, if you follow loss in the backward direction, using its .grad_fn attribute, you will see a graph of computations that looks like this:

    input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
          -> view -> linear -> relu -> linear -> relu -> linear
          -> MSELoss
          -> loss

    So, when we call loss.backward(), the whole graph is differentiated w.r.t. the loss, and all Tensors in the graph that has requres_grad=True will have their .grad Tensor accumulated with the gradient.

    For illustration, let us follow a few steps backward:

    print(loss.grad_fn)  # MSELoss
    print(loss.grad_fn.next_functions[0][0])  # Linear
    print(loss.grad_fn.next_functions[0][0].next_functions[0][0])  # ReLU

    Out:

    <MseLossBackward object at 0x7fb9f7338780>
    <AddmmBackward object at 0x7fb9f73385c0>
    <ExpandBackward object at 0x7fb9f73385c0>

    Backprop

    To backpropagate the error all we have to do is to loss.backward(). You need to clear the existing gradients though, else gradients will be accumulated to existing gradients.

    Now we shall call loss.backward(), and have a look at conv1’s bias gradients before and after the backward.

    net.zero_grad()     # zeroes the gradient buffers of all parameters
     
    print('conv1.bias.grad before backward')
    print(net.conv1.bias.grad)
     
    loss.backward()
     
    print('conv1.bias.grad after backward')
    print(net.conv1.bias.grad)

    Out:

    conv1.bias.grad before backward
    tensor([ 0.,  0.,  0.,  0.,  0.,  0.])
    conv1.bias.grad after backward
    tensor([ 0.0501,  0.1040, -0.1200,  0.0833,  0.0081,  0.0120])

    Now, we have seen how to use loss functions.

    Read Later:

    The neural network package contains various modules and loss functions that form the building blocks of deep neural networks. A full list with documentation is here.

    The only thing left to learn is:

    • Updating the weights of the network

    Update the weights

    The simplest update rule used in practice is the Stochastic Gradient Descent (SGD):

    weight = weight - learning_rate * gradient

    We can implement this using simple python code:

    learning_rate = 0.01
    for f in net.parameters():
        f.data.sub_(f.grad.data * learning_rate)

    However, as you use neural networks, you want to use various different update rules such as SGD, Nesterov-SGD, Adam, RMSProp, etc. To enable this, we built a small package: torch.optim that implements all these methods. Using it is very simple:

    import torch.optim as optim
     
    # create your optimizer
    optimizer = optim.SGD(net.parameters(), lr=0.01)
     
    # in your training loop:
    optimizer.zero_grad()   # zero the gradient buffers
    output = net(input)
    loss = criterion(output, target)
    loss.backward()
    optimizer.step()    # Does the update

    Note

    Observe how gradient buffers had to be manually set to zero using optimizer.zero_grad(). This is because gradients are accumulated as explained in Backprop section.

    Total running time of the script: ( 0 minutes 0.160 seconds)

    Download Python sourcecode: neural_networks_tutorial.py

     

    Download Jupyternotebook:neural_networks_tutorial.ipynb

    Training a classifier

    This is it. You have seen how to define neural networks, compute loss and make updates to the weights of the network.

    Now you might be thinking,

    What about data?

    Generally, when you have to deal with image, text, audio or video data, you can use standard python packages that load data into a numpy array. Then you can convert this array into a torch.*Tensor.

    • For images, packages such as Pillow, OpenCV are useful
    • For audio, packages such as scipy and librosa
    • For text, either raw Python or Cython based loading, or NLTK and SpaCy are useful

    Specifically for vision, we have created a package called torchvision, that has data loaders for common datasets such as Imagenet, CIFAR10, MNIST, etc. and data transformers for images, viz.,torchvision.datasets and torch.utils.data.DataLoader.

    This provides a huge convenience and avoids writing boilerplate code.

    For this tutorial, we will use the CIFAR10 dataset. It has the classes: ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’. The images in CIFAR-10 are of size 3x32x32, i.e. 3-channel color images of 32x32 pixels in size.

    cifar10

    Training an image classifier

    We will do the following steps in order:

    1. Load and normalizing the CIFAR10 training and test datasets using torchvision
    2. Define a Convolution Neural Network
    3. Define a loss function
    4. Train the network on the training data
    5. Test the network on the test data

    1. Loading and normalizing CIFAR10

    Using torchvision, it’s extremely easy to load CIFAR10.

    import torch
    import torchvision
    import torchvision.transforms as transforms

    The output of torchvision datasets are PILImage images of range [0, 1]. We transform them to Tensors of normalized range [-1, 1].

    transform = transforms.Compose(
        [transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
     
    trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                            download=True, transform=transform)
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                              shuffle=True, num_workers=2)
     
    testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                           download=True, transform=transform)
    testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                             shuffle=False, num_workers=2)
     
    classes = ('plane', 'car', 'bird', 'cat',
               'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

    Out:

    Files already downloaded and verified
    Files already downloaded and verified

    Let us show some of the training images, for fun.

    import matplotlib.pyplot as plt
    import numpy as np
     
    # functions to show an image
     
     
    def imshow(img):
        img = img / 2 + 0.5     # unnormalize
        npimg = img.numpy()
        plt.imshow(np.transpose(npimg, (1, 2, 0)))
     
     
    # get some random training images
    dataiter = iter(trainloader)
    images, labels = dataiter.next()
     
    # show images
    imshow(torchvision.utils.make_grid(images))
    # print labels
    print(' '.join('%5s' % classes[labels[j]] for j in range(4)))

    Out:

    ship truck horse horse

    2. Define a Convolution Neural Network

    Copy the neural network from the Neural Networks section before and modify it to take 3-channel images (instead of 1-channel images as it was defined).

    import torch.nn as nn
    import torch.nn.functional as F
     
     
    class Net(nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.conv1 = nn.Conv2d(3, 6, 5)
            self.pool = nn.MaxPool2d(2, 2)
            self.conv2 = nn.Conv2d(6, 16, 5)
            self.fc1 = nn.Linear(16 * 5 * 5, 120)
            self.fc2 = nn.Linear(120, 84)
            self.fc3 = nn.Linear(84, 10)
     
        def forward(self, x):
            x = self.pool(F.relu(self.conv1(x)))
            x = self.pool(F.relu(self.conv2(x)))
            x = x.view(-1, 16 * 5 * 5)
            x = F.relu(self.fc1(x))
            x = F.relu(self.fc2(x))
            x = self.fc3(x)
            return x
     
     
    net = Net()

    3. Define a Loss function and optimizer

    Let’s use a Classification Cross-Entropy loss and SGD with momentum.

    import torch.optim as optim
     
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

    4. Train the network

    This is when things start to get interesting. We simply have to loop over our data iterator, and feed the inputs to the network and optimize.

    for epoch in range(2):  # loop over the dataset multiple times
     
        running_loss = 0.0
        for i, data in enumerate(trainloader, 0):
            # get the inputs
            inputs, labels = data
     
            # zero the parameter gradients
            optimizer.zero_grad()
     
            # forward + backward + optimize
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
     
            # print statistics
            running_loss += loss.item()
            if i % 2000 == 1999:    # print every 2000 mini-batches
                print('[%d, %5d] loss: %.3f' %
                      (epoch + 1, i + 1, running_loss / 2000))
                running_loss = 0.0
     
    print('Finished Training')

    Out:

    [1,  2000] loss: 2.199
    [1,  4000] loss: 1.856
    [1,  6000] loss: 1.688
    [1,  8000] loss: 1.606
    [1, 10000] loss: 1.534
    [1, 12000] loss: 1.488
    [2,  2000] loss: 1.420
    [2,  4000] loss: 1.384
    [2,  6000] loss: 1.336
    [2,  8000] loss: 1.351
    [2, 10000] loss: 1.309
    [2, 12000] loss: 1.277
    Finished Training

    5. Test the network on the test data

    We have trained the network for 2 passes over the training dataset. But we need to check if the network has learnt anything at all.

    We will check this by predicting the class label that the neural network outputs, and checking it against the ground-truth. If the prediction is correct, we add the sample to the list of correct predictions.

    Okay, first step. Let us display an image from the test set to get familiar.

    dataiter = iter(testloader)
    images, labels = dataiter.next()
     
    # print images
    imshow(torchvision.utils.make_grid(images))
    print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))

    Out:

    GroundTruth:    cat  ship  ship plane

    Okay, now let us see what the neural network thinks these examples above are:

    outputs = net(images)

    The outputs are energies for the 10 classes. Higher the energy for a class, the more the network thinks that the image is of the particular class. So, let’s get the index of the highest energy:

    _, predicted = torch.max(outputs, 1)
     
    print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
                                  for j in range(4)))

    Out:

    Predicted:    cat   car   car plane

    The results seem pretty good.

    Let us look at how the network performs on the whole dataset.

    correct = 0
    total = 0
    with torch.no_grad():
        for data in testloader:
            images, labels = data
            outputs = net(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
     
    print('Accuracy of the network on the 10000 test images: %d %%' % (
        100 * correct / total))

    Out:

    Accuracy of the network on the 10000 test images: 53 %

    That looks waaay better than chance, which is 10% accuracy (randomly picking a class out of 10 classes). Seems like the network learnt something.

    Hmmm, what are the classes that performed well, and the classes that did not perform well:

    class_correct = list(0. for i in range(10))
    class_total = list(0. for i in range(10))
    with torch.no_grad():
        for data in testloader:
            images, labels = data
            outputs = net(images)
            _, predicted = torch.max(outputs, 1)
            c = (predicted == labels).squeeze()
            for i in range(4):
                label = labels[i]
                class_correct[label] += c[i].item()
                class_total[label] += 1
     
     
    for i in range(10):
        print('Accuracy of %5s : %2d %%' % (
            classes[i], 100 * class_correct[i] / class_total[i]))

    Out:

    Accuracy of plane : 60 %
    Accuracy of   car : 75 %
    Accuracy of  bird : 33 %
    Accuracy of   cat : 50 %
    Accuracy of  deer : 26 %
    Accuracy of   dog : 47 %
    Accuracy of  frog : 54 %
    Accuracy of horse : 66 %
    Accuracy of  ship : 48 %
    Accuracy of truck : 70 %

    Okay, so what next?

    How do we run these neural networks on the GPU?

    Training on GPU

    Just like how you transfer a Tensor on to the GPU, you transfer the neural net onto the GPU.

    Let’s first define our device as the first visible cuda device if we have CUDA available:

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
     
    # Assume that we are on a CUDA machine, then this should print a CUDA device:
     
    print(device)

    Out:

    cuda:0

    The rest of this section assumes that device is a CUDA device.

    Then these methods will recursively go over all modules and convert their parameters and buffers to CUDA tensors:

    net.to(device)

    Remember that you will have to send the inputs and targets at every step to the GPU too:

    inputs, labels = inputs.to(device), labels.to(device)

    Why dont I notice MASSIVE speedup compared to CPU? Because your network is realllly small.

    Exercise: Try increasing the width of your network (argument 2 of the first nn.Conv2d, and argument 1 of the second nn.Conv2d – they need to be the same number), see what kind of speedup you get.

    Goals achieved:

    • Understanding PyTorch’s Tensor library and neural networks at a high level.
    • Train a small neural network to classify images

    Training on multiple GPUs

    If you want to see even more MASSIVE speedup using all of your GPUs, please check out Optional: Data Parallelism.

    Where do I go next?

    Total running time of the script: ( 1 minutes 36.463 seconds)

    Download Python sourcecode: cifar10_tutorial.py

     

    Download Jupyternotebook: cifar10_tutorial.ipynb

    Optional: Data Parallelism

    AuthorsSung Kim and Jenny Kang

    In this tutorial, we will learn how to use multiple GPUs using DataParallel.

    It’s very easy to use GPUs with PyTorch. You can put the model on a GPU:

    device = torch.device("cuda:0")
    model.to(device)

    Then, you can copy all your tensors to the GPU:

    mytensor = my_tensor.to(device)

    Please note that just calling mytensor.to(device) returns a new copy of mytensor on GPU instead of rewriting mytensor. You need to assign it to a new variable and use that tensor on the GPU.

    It’s natural to execute your forward, backward propagations on multiple GPUs. However, Pytorch will only use one GPU by default. You can easily run your operations on multiple GPUs by making your model run parallelly using DataParallel:

    model = nn.DataParallel(model)

    That’s the core behind this tutorial. We will explore it in more detail below.

    Imports and parameters

    Import PyTorch modules and define parameters.

    import torch
    import torch.nn as nn
    from torch.utils.data import Dataset, DataLoader
     
    # Parameters and DataLoaders
    input_size = 5
    output_size = 2
     
    batch_size = 30
    data_size = 100

    Device

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    Dummy DataSet

    Make a dummy (random) dataset. You just need to implement the getitem

    class RandomDataset(Dataset):
     
        def __init__(self, size, length):
            self.len = length
            self.data = torch.randn(length, size)
     
        def __getitem__(self, index):
            return self.data[index]
     
        def __len__(self):
            return self.len
     
    rand_loader = DataLoader(dataset=RandomDataset(input_size, 100),
                             batch_size=batch_size, shuffle=True)

    Simple Model

    For the demo, our model just gets an input, performs a linear operation, and gives an output. However, you can use DataParallel on any model (CNN, RNN, Capsule Net etc.)

    We’ve placed a print statement inside the model to monitor the size of input and output tensors. Please pay attention to what is printed at batch rank 0.

    class Model(nn.Module):
        # Our model
     
        def __init__(self, input_size, output_size):
            super(Model, self).__init__()
            self.fc = nn.Linear(input_size, output_size)
     
        def forward(self, input):
            output = self.fc(input)
            print("	In Model: input size", input.size(),
                  "output size", output.size())
     
            return output

    Create Model and DataParallel

    This is the core part of the tutorial. First, we need to make a model instance and check if we have multiple GPUs. If we have multiple GPUs, we can wrap our model using nn.DataParallel. Then we can put our model on GPUs by model.to(device)

    model = Model(input_size, output_size)
    if torch.cuda.device_count() > 1:
      print("Let's use", torch.cuda.device_count(), "GPUs!")
      # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
      model = nn.DataParallel(model)
     
    model.to(device)

    Run the Model

    Now we can see the sizes of input and output tensors.

    for data in rand_loader:
        input = data.to(device)
        output = model(input)
        print("Outside: input size", input.size(),
              "output_size", output.size())

    Out:

    In Model: input size torch.Size([30, 5]) output size torch.Size([30, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
            In Model: input size torch.Size([30, 5]) output size torch.Size([30, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
            In Model: input size torch.Size([30, 5]) output size torch.Size([30, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
            In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

    Results

    When we batch 30 inputs and 30 outputs, the model gets 30 and outputs 30 as expected. But if you have GPUs, then you can get results like this.

    2 GPUs

    If you have 2, you will see:

    # on 2 GPUs
    Let's use 2 GPUs!
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
        In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
        In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
    Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

    3 GPUs

    If you have 3 GPUs, you will see:

    Let's use 3 GPUs!
        In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
        In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
        In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
        In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
        In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
        In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
        In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

    8 GPUs

    If you have 8, you will see:

    Let's use 8 GPUs!
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

    Summary

    DataParallel splits your data automatically and sends job orders to multiple models on several GPUs. After each model finishes their job, DataParallel collects and merges the results before returning it to you.

    For more information, please check outhttp://pytorch.org/tutorials/beginner/former_torchies/parallelism_tutorial.html.

    Total running time of the script: ( 0 minutes 0.008 seconds)

    Download Python sourcecode: data_parallel_tutorial.py

     

    Download Jupyternotebook:data_parallel_tutorial.ipynb

  • 相关阅读:
    在线预览Office文档
    花生壳内网穿透
    Net core跨域
    EF链表查询
    Python冒泡排序、选择排序、插入排序、希尔排序、归并排序
    竟然可以这样学python!
    如何使用python打印9乘9乘法口诀表?
    python爬取小视频
    —用python写PDF转换器
    从0到1搭建个人博客-Django(三)
  • 原文地址:https://www.cnblogs.com/2008nmj/p/9055987.html
Copyright © 2011-2022 走看看