zoukankan      html  css  js  c++  java
  • Codeforces Round #271 (Div. 2) C. Captain Marmot

    C. Captain Marmot
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Captain Marmot wants to prepare a huge and important battle against his enemy, Captain Snake. For this battle he has n regiments, each consisting of 4 moles.

    Initially, each mole i (1 ≤ i ≤ 4n) is placed at some position (xi, yi) in the Cartesian plane. Captain Marmot wants to move some moles to make the regiments compact, if it's possible.

    Each mole i has a home placed at the position (ai, bi). Moving this mole one time means rotating his position point (xi, yi90 degrees counter-clockwise around it's home point (ai, bi).

    A regiment is compact only if the position points of the 4 moles form a square with non-zero area.

    Help Captain Marmot to find out for each regiment the minimal number of moves required to make that regiment compact, if it's possible.

    Input

    The first line contains one integer n (1 ≤ n ≤ 100), the number of regiments.

    The next 4n lines contain 4 integers xiyiaibi ( - 104 ≤ xi, yi, ai, bi ≤ 104).

    Output

    Print n lines to the standard output. If the regiment i can be made compact, the i-th line should contain one integer, the minimal number of required moves. Otherwise, on the i-th line print "-1" (without quotes).

    Sample test(s)
    input
    4
    1 1 0 0
    -1 1 0 0
    -1 1 0 0
    1 -1 0 0
    1 1 0 0
    -2 1 0 0
    -1 1 0 0
    1 -1 0 0
    1 1 0 0
    -1 1 0 0
    -1 1 0 0
    -1 1 0 0
    2 2 0 1
    -1 0 0 -2
    3 0 0 -2
    -1 1 -2 0
    output
    1
    -1
    3
    3
    Note

    In the first regiment we can move once the second or the third mole.

    We can't make the second regiment compact.

    In the third regiment, from the last 3 moles we can move once one and twice another one.

    In the fourth regiment, we can move twice the first mole and once the third mole

    思路:枚举旋转以后的所以情况,判断是否组成正方形

    判断是否为正方形,我们可以枚举1和谁是对角,

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    #include<queue>
    #include<vector>
    #include<set>
    #include<stack>
    #include<map>
    #include<ctime>
    #include<bitset>
    #define LL long long
    #define INF 89898989
    #define mod 1000000007
    #define maxn 100010
    #define pi acos(-1.0)
    #define eps 1e-6
    using namespace std;
    
    const double e = 0.5*pi;
    struct node
    {
       double x,y ;
    };
    node get(node a,node b )
    {
        node bb ;
        bb.x = ((double)a.x-b.x)*cos(e)-(a.y-b.y)*sin(e)+b.x;
        bb.y = ((double)a.y-b.y)*cos(e)+(a.x-b.x)*sin(e)+b.y;
        return bb ;
    }
    int ans=INF;
    node a[7],b[7],aa[7] ;
    double dis(int i,int j )
    {
        return (a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y);
    }
    void out()
    {
         for( int i = 1 ; i <= 4 ;i++)
         {
             printf("%.5lf %.5lf
    ",a[i].x,a[i].y) ;
         }
         puts("=====");
    }
    bool find(int i,int j )
    {
        if(i==1&&j==2)
        {
            if(fabs(dis(1,2)-dis(3,4)) <= eps && fabs(dis(1,3)-dis(3,2)) <= eps ){
                    if(fabs(dis(1,4)-dis(4,2)) <= eps)
                    return true;
            }
        }
        if(i==1&&j==3)
        {
             if(fabs(dis(1,3)-dis(2,4)) <= eps && fabs(dis(1,2)-dis(2,3)) <= eps )
                    if(fabs(dis(1,4)-dis(4,3)) <= eps)
                    return true;
        }
        if(i==1&&j==4)
        {
             if(fabs(dis(1,4)-dis(3,2)) <= eps && fabs(dis(1,2)-dis(2,4)) <= eps )
              if(fabs(dis(1,3)-dis(4,3)) <= eps)
                    return true;
        }
        return false;
    }
    bool check()
    {
        for( int i = 1 ; i < 2 ;i++)
        {
            for(int j = i+1 ; j <= 4 ;j++)
            {
                if(find(i,j)&&dis(i,j)>eps)return true;
            }
        }
        return false;
    }
    void dfs(int n,int cnt)
    {
        if(n>=5)
        {
            bool flag=check();
            if(flag)
            {
                ans = min(ans,cnt) ;
            }
            return ;
        }
        for(int i = 0 ; i < 4 ;i++)
        {
            a[n]=aa[n];
            for(int j =1 ; j<=i;j++)
            {
                a[n]=get(a[n],b[n]);
            }
            dfs(n+1,i+cnt);
        }
    }
    int main()
    {
        int i , n , k, m , j ;
        int T;
        cin >>n ;
        while(n--)
        {
            for( i = 1 ; i <= 4 ;i++){
                //scanf("%lf%lf",&aa[i].x,&aa[i].y) ;
                cin >> aa[i].x >> aa[i].y ;
                cin >> b[i].x >> b[i].y ;
              //  scanf("%lf%lf",&b[i].x,&b[i].y) ;
                a[i]=aa[i];
            }
            ans=INF;
            for( i = 0 ; i < 4 ;i++ )
            {
                a[1]=aa[1];
                for( j =1 ; j<=i;j++)
                {
                    a[1] = get(a[1],b[1]);
                }
                dfs(2,i) ;
            }
            if(ans==INF)ans=-1;
            printf("%d
    ",ans);
        }
        return  0;
    }
    

      

  • 相关阅读:
    排序算法——快速排序
    ArrayDeque源码解析
    PriorityQueue源码解析
    HashMap源码解析
    LinkedList源码解析
    ArrayList源码解析
    获取Spring容器管理的Bean工具类
    使用Google zxing生成二维码
    解决:SpringCloud中Feign支持GET请求POJO传参
    MySQL8.0 Unable to load authentication plugin 'caching_sha2_password'
  • 原文地址:https://www.cnblogs.com/20120125llcai/p/4009088.html
Copyright © 2011-2022 走看看