Prime Ring Problem
Time Limit : 4000/2000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 13 Accepted Submission(s) : 5
Font: Times New Roman | Verdana | Georgia
Font Size: ← →
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.

Note: the number of first circle should always be 1.

Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6 8
Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2
Source
Asia 1996, Shanghai (Mainland China)
这题我用广搜 递归没有理解
每次都从2开始 加
这一个组合最后一位+下一个没有被标记过的数 相加
并判断 这两个数的和是不是素数
如果是素数 就进队列;
如果 这个组合的最后一位 的位置与 n相同 就要判断他与头相加 是否为素数
#include<iostream> #include<algorithm> #include<queue> struct word { bool used[25];//记录该数字组合已使用过的数 int end[25];//记录数字组合 int ci;//记录次数 }; using namespace std; int sushu[15]={1,2,3,5,7,11,13,17,19,23,29,31,37,41,43};//素数 //记录数据 bool check(int a) { if(a==1) return 0; for(int i=0;i<15;i++) { if(a==sushu[i]) return 1;//是素数 } return 0; } int main() { int n; int m=0; while(scanf("%d",&n)!=EOF) { m++; printf("Case %d: ",m); queue<word> q; word x1; x1.ci=1; memset(x1.used,0,sizeof(x1.used)); memset(x1.end,0,sizeof(x1.end)); x1.end[1]=1; x1.used[1]=1;//开头一位是1; q.push(x1); while(!q.empty()) { word now; now=q.front(); q.pop(); if(now.ci==n) { if(check(now.end[n]+1))//到达最后一位 且 条件符合 输出 { printf("1"); for(int j=2;j<=n;j++) { printf(" %d",now.end[j]); } printf(" "); } } else { for(int lin=2;lin<=n;lin++) { if(now.used[lin]==0) { if(check(now.end[now.ci]+lin)&&now.ci<n)//如果是素数 现在的位置 加上下一位 { now.used[lin]=1; now.ci++; now.end[now.ci]=lin; q.push(now);//放进队列里 now.ci--; now.used[lin]=0;//返回原值 } if(check(now.end[now.ci]+now.end[1])&&now.ci==n)//若为最后一位 则与头相加; { now.used[lin]=1; now.ci++; now.end[now.ci]=lin; q.push(now); now.used[lin]=0; now.ci--; } } } } } printf(" "); } return 0; }