题目大意:立体的八数码问题,一次操作是滚动一次方块,问从初始状态到目标状态的最少滚动次数。
题目分析:这道题已知初始状态和目标状态,且又状态数目庞大,适宜用双向BFS。每个小方块有6种状态,整个大方格有9*6^8个状态。每个小方块用一位6进制数表示即可。
注意:状态转移时要谨慎,否则会出现意想不到的错误;
这道题的末状态有256(2^8)个,如果对搜索层数不加限制,即使双向BFS也会TLE的,当限制正向搜索15层逆向搜索15层至正向搜索27层反向搜索3层时都能AC(我下面贴出的程序是这样的),其中正向搜21层,逆向搜9层时在时间上最高效;
对于这道题,开辟一个恰当大小的标记数组也能使时间降低一大截;
代码如下:
# include<iostream> # include<cstdio> # include<cmath> # include<map> # include<queue> # include<cstring> # include<algorithm> using namespace std; struct Node { int t,n,s; Node(int _t,int _n,int _s):t(_t),n(_n),s(_s){} bool operator < (const Node &a) const { return t>a.t; } }; map<char,int>mp; int ss[8]={1,6,36,216,1296,7776,46656,279936}; int goal[9],path[9],vis[9][1679616],dist[9][1679616]; int d[4][2]={{1,0},{-1,0},{0,-1},{0,1}}; int p[6][4]={ {2,2,5,5}, {4,4,3,3}, {0,0,4,4}, {5,5,1,1}, {1,1,2,2}, {3,3,0,0}, }; priority_queue<Node>q[2]; void dfs(int u,int gp) { if(u==9){ int sta=0,cnt=0; for(int i=0;i<9;++i) if(path[i]!=-1){ sta=sta+ss[7-cnt]*path[i]; ++cnt; } dist[gp][sta]=0; vis[gp][sta]=1; q[1].push(Node(0,gp,sta)); return ; } if(goal[u]==1){ path[u]=0; dfs(u+1,gp); path[u]=1; dfs(u+1,gp); }else if(goal[u]==2){ path[u]=2; dfs(u+1,gp); path[u]=3; dfs(u+1,gp); }else if(goal[u]==3){ path[u]=4; dfs(u+1,gp); path[u]=5; dfs(u+1,gp); }else{ path[u]=-1; dfs(u+1,gp); } } void init(int x,int y) { while(!q[0].empty()) q[0].pop(); while(!q[1].empty()) q[1].pop(); memset(dist,-1,sizeof(dist)); memset(vis,-1,sizeof(vis)); dist[x*3+y][0]=0; vis[x*3+y][0]=0; q[0].push(Node(0,x*3+y,0)); for(int i=0;i<9;++i) if(goal[i]==0){ dfs(0,i); break; } } int getv(int p,int s) { for(int i=1;i<=8-p;++i) s/=6; return s%6; } int bfs(int id,int step) { while(!q[id].empty()) { Node u=q[id].top(); if(u.t>step) return -1; q[id].pop(); if(vis[u.n][u.s]==!id) return u.t; int gg[9]; int x=u.n/3,y=u.n%3; for(int i=0;i<4;++i){ int nx=x+d[i][0],ny=y+d[i][1]; if(nx<0||nx>2||ny<0||ny>2) continue; int s=u.s; for(int j=8;j>=0;--j){ if(j==u.n) gg[j]=-1; else{ gg[j]=s%6; s/=6; } } gg[u.n]=p[gg[nx*3+ny]][i]; gg[nx*3+ny]=-1; int sta=0,cnt=0; for(int j=0;j<9;++j) if(gg[j]!=-1){ sta=sta+ss[7-cnt]*gg[j]; ++cnt; } if(vis[nx*3+ny][sta]!=id){ if(vis[nx*3+ny][sta]==-1){ vis[nx*3+ny][sta]=id; dist[nx*3+ny][sta]=u.t+1; q[id].push(Node(u.t+1,nx*3+ny,sta)); } else return u.t+1+dist[nx*3+ny][sta]; } } } return -1; } int solve() { int step=0; while(!q[0].empty()||!q[1].empty()){ if(step>30) return -1; if(!q[0].empty()&&step<=21){ int k=bfs(0,step); if(k>30) return -1; if(k!=-1) return k; } if(!q[1].empty()&&step<=9){ int k=bfs(1,step); if(k>30) return -1; if(k!=-1) return k; } ++step; } return -1; } int main() { //freopen("UVA-1604 Cubic Eight-Puzzle.txt","r",stdin); mp['E']=0,mp['W']=1,mp['R']=2,mp['B']=3; int x,y,gx,gy; char s[2]; while(scanf("%d%d",&y,&x)&&(x+y)) { --x,--y; for(int i=0;i<9;++i){ scanf("%s",s); goal[i]=mp[s[0]]; } init(x,y); printf("%d ",solve()); } return 0; }