zoukankan      html  css  js  c++  java
  • poj 3254Corn Fields (入门状压dp)

    Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ≤ 12) square parcels. He wants to grow some yummy corn for the cows on a number of squares. Regrettably, some of the squares are infertile and can't be planted. Canny FJ knows that the cows dislike eating close to each other, so when choosing which squares to plant, he avoids choosing squares that are adjacent; no two chosen squares share an edge. He has not yet made the final choice as to which squares to plant.
    
    Being a very open-minded man, Farmer John wants to consider all possible options for how to choose the squares for planting. He is so open-minded that he considers choosing no squares as a valid option! Please help Farmer John determine the number of ways he can choose the squares to plant.
    
    Input
    Line 1: Two space-separated integers: M and N 
    Lines 2.. M+1: Line i+1 describes row i of the pasture with N space-separated integers indicating whether a square is fertile (1 for fertile, 0 for infertile)
    Output
    Line 1: One integer: the number of ways that FJ can choose the squares modulo 100,000,000.
    Sample Input
    2 3
    1 1 1
    0 1 0
    Sample Output
    9
    Hint
    Number the squares as follows: 
    1 2 3
      4  
    
    There are four ways to plant only on one squares (1, 2, 3, or 4), three ways to plant on two squares (13, 14, or 34), 1 way to plant on three squares (134), and one way to plant on no squares. 4+3+1+1=9.

    被hdu 多校第3场c题教育了,来刷状压dp

    先处理下所有的满足的状态;i&i<<1

    然后和上一个状态比较。满足的状态里选出和上一行满足的状态

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    //#include <algorithm>
    #include <vector>
    using namespace std;
    #define ll long long
    //#define mod 998244353
    const int mod=100000000;
    int low[15];
    int temp;
    int state[1<<15];
    int dp[15][1<<15];
    int main()
    {
        int n,m;
        scanf("%d%d",&n,&m);
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<m;j++)
            {
                int num;
                scanf("%d",&num);
                low[i]=low[i]|(num<<j);
            }
        }//处理每一行的状态
        temp=0;
        for(int i=0;i<(1<<m);i++)
        {
            if((i&(i<<1))==0)
            {
                state[temp++]=i;
            }
        }//处理所有满足的状态
        memset(dp,0,sizeof dp);
        for(int i=0;i<temp;i++)
        {
            if((low[0]&state[i])==state[i])
            dp[0][i]=1;
            
            
        }//处理第一行
        
        for(int i=1;i<n;i++)
            for(int j=0;j<temp;j++)
            {
                if((low[i]&state[j])==state[j])
                {
                    for(int k=0;k<temp;k++)
                    {
                        if((state[j]&state[k])==0)
                            dp[i][j]=(dp[i][j]+dp[i-1][k])%mod;
                    }
                }
            }
        int ans=0;
        for(int i=0;i<temp;i++)
        {
            ans=ans+dp[n-1][i];
            ans=ans%mod;
        }
        cout<<ans<<endl;
        
    return 0;
    }
  • 相关阅读:
    4G DTU在城市景观照明中的应用解决方案
    物联网在物业管理和智慧楼宇中的应用解决方案
    4G工业路由器等物联网设备在食品安全检测中的应用
    NB-IoT网络在农业和畜牧业中的物联网智能灌溉应用案例
    串口服务器等应用于污水处理厂的自动监控和控制管理
    插卡式双卡4G工业路由器在数控机床远程控制中的应用
    4G工业路由器在水电站远程监控中的应用案例
    4G工业路由器在供水系统和道路交通远程检测中的应用案例
    HDU 6188 Duizi and Shunzi 贪心
    HDU 6185 Covering 矩阵快速幂
  • 原文地址:https://www.cnblogs.com/2014slx/p/9399726.html
Copyright © 2011-2022 走看看