题目
思路&做法
我们先对标准作文库建广义后缀自动机。
然后对于每一篇阿米巴的作文, 我们首先把放到广义后缀自动机跑一遍, 对于每一个位置, 记录公共子串的长度(()即代码和下文中的(val)数组())
接着我们二分答案, 用DP检验。
Dp方程很好想, (d_i = max { d_j + i - j | i-val_i <= j <= i-lim })
可以用单点队列优化。
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std;
const int N = 1300010; //数组不能太大, 会T的
int n, m;
int val[N];
struct Suffix_Automaton
{ int nxt[N][2], fail[N], sz;
int len[N];
int root;
Suffix_Automaton() { }
inline int newnode(int l)
{ memset(nxt[sz], 0, sizeof(nxt[sz]));
fail[sz] = 0;
len[sz] = l;
return sz++;
}
void init()
{ sz = 1;
root = newnode(0);
}
inline int idx(char x) { return x - '0'; }
int add(int last, char x)
{ int c = idx(x);
if (nxt[last][c])
{ int p = last, q = nxt[last][c];
if (len[q] == len[p] + 1)
return q;
else
{ int u = newnode(len[p] + 1);
for (int i = 0; i < 2; i++) nxt[u][i] = nxt[q][i];
fail[u] = fail[q];
fail[q] = u;
while (p && nxt[p][c] == q)
{ nxt[p][c] = u;
p = fail[p];
}
return u;
}
}
else
{ int now = newnode(len[last] + 1);
int p = last;
while (p && !nxt[p][c])
{ nxt[p][c] = now;
p = fail[p];
}
if (!p) fail[now] = root;
else
{ int q = nxt[p][c];
if (len[q] == len[p] + 1)
fail[now] = q;
else
{ int u = newnode(len[p] + 1);
for (int i = 0; i < 2; i++) nxt[u][i] = nxt[q][i];
fail[u] = fail[q];
fail[now] = fail[q] = u;
while (p && nxt[p][c] == q)
{ nxt[p][c] = u;
p = fail[p];
}
}
}
return now;
}
}
void insert(char *s)
{ int Len = strlen(s);
int last = root;
for (int i = 0; i < Len; i++)
last = add(last, s[i]);
}
void work(char *str)
{ int cnt = 0;
int now = root;
int Len = strlen(str+1);
for (int i = 1; i <= Len; i++)
{ int c = idx(str[i]);
if (nxt[now][c])
{ cnt++;
now = nxt[now][c];
}
else
{ while (now && !nxt[now][c]) now = fail[now];
if (!now) { now = root; cnt = 0; }
else { cnt = len[now] + 1; now = nxt[now][c]; }
}
val[i] = cnt;
}
}
} tzw;
int d[N];
int Q[N], hd, tl;
bool check(char *s, int lim)
{ int Len = strlen(s+1);
for (int i = 0; i <= lim; i++) d[i] = 0;
hd = 0, tl = 1;
for (register int i = lim; i <= Len; i++)
{ d[i] = d[i-1];
if (i > lim) //这里一定不能去掉, 去掉会RE
{ while (hd < tl && Q[hd] < i-val[i]) hd++;
while (hd < tl && d[Q[tl-1]]+i-Q[tl-1] < d[i-lim]+i-(i-lim)) tl--;
Q[tl++] = i - lim;
}
if (val[i] >= lim) d[i] = max(d[i], d[Q[hd]] + i - Q[hd]);
}
return 10*d[Len] >= 9*Len;
}
int solve(char *s)
{ int l = 1, r = strlen(s+1);
while (l <= r)
{ int mid = (l+r) >> 1;
if (check(s, mid)) l = mid + 1;
else r = mid - 1;
}
return r;
}
char str[N];
int main()
{ scanf("%d %d", &n, &m);
tzw.init();
for (register int i = 1; i <= m; i++)
{ scanf("%s", str);
tzw.insert(str);
}
for (register int i = 1; i <= n; i++)
{ scanf("%s", str+1);
tzw.work(str);
if(!check(str, 1)) puts("0");
else printf("%d
", solve(str));
}
return 0;
}
备注
注释里的坑我全踩了