zoukankan      html  css  js  c++  java
  • CF1096E The Top Scorer

    http://codeforces.com/problemset/problem/1096/E

    题意:

    一场游戏有p人参加,得分总和为s分,每个人的分数都是非负整数,且其中一号玩家的得分至少为r

    而现在不知道具体的得分情况,求一号玩家获胜的概率,我们认为任何一种合法的得分情况出现的概率相等

    得分最高的玩家获胜,特殊的,若有多人得分相同,他们获胜的几率相同

    1≤p≤100,0rs5000,要求答案对998244353取模


    这题考试的时候连暴力都没想出来555

    看题解后,感觉到了一种套路。。。

    设 g(s,p,m)=(在一场总分和s,玩家数p的游戏中,没有人得分超过m的合法状态数)

    这东西dp起来蛮简单(的吧?),但是你会发现他的复杂度有点难以接受。。。但这至少给我们一个启示?

    • 遇到获胜等设计随机状态中涉及最大值的问题,可以试着转化成一些“不超过”问题的组合

    我们试着用数学方法解决这个问题吧

     

    这个 这个公式出自隔板法和容斥原理,请允许我解释一下

    首先看容斥,简单来说就是想计算 所有情况-至少一个人超过m+至少两个人超过m-至少三个人超过m……

    然后看隔板法,如何计算有i个人超过m呢?先选出i个人C(p,i),给每个人先分配m+1个,就变成了箱子内剩余数可以为零的经典隔板问题

    这个式子在有预处理的帮助下的代价是O(p)

    有了g之后呢,答案f貌似就很好计算了,搬个公式大家自己体会吧~

    总复杂度:O(s*p2)

     1 #include<cstdio>
     2 #define ll long long
     3 #define mod 998244353
     4 using namespace std;
     5 ll ksm(ll x,ll t){ll ans=1;for(;t;t>>=1,x=(x*x)%mod)if(t&1)ans=(ans*x)%mod;return ans;}
     6 int p,s,r;
     7 ll fac[6005],invf[6005];
     8 void pre(){
     9     fac[0]=1;
    10     for(int i=1;i<=p+s;i++)fac[i]=(fac[i-1]*i)%mod;
    11     invf[p+s]=ksm(fac[p+s],mod-2);
    12     for(int i=p+s-1;i>=0;i--)invf[i]=(invf[i+1]*(i+1))%mod;
    13 }
    14 ll C(ll n,ll m){
    15     if(n<0||m<0||m>n)return 0;
    16     return ((fac[n]*invf[n-m])%mod*invf[m])%mod;
    17 }
    18 ll ans;
    19 ll g(ll s,ll p,ll m){
    20     if(p==0&&s==0)return 1;
    21     ll tot=0;
    22     for(int i=0,t=1;i<=p;i++){
    23         tot+=t*(C(p,i)*C(s+p-1-i*(m+1),p-1)%mod);
    24         tot=(tot+mod)%mod;
    25         t*=-1;
    26     }
    27     return tot;
    28 }
    29 int main(){
    30     scanf("%d%d%d",&p,&s,&r);
    31     pre();
    32     for(int t=r;t<=s;t++)
    33     for(int q=1;q<=p;q++){
    34         ans+=((C(p-1,q-1)*ksm(q,mod-2)%mod)*g(s-q*t,p-q,t-1))%mod;
    35         ans%=mod;
    36     }
    37     ans*=ksm(C(s+p-1-r,p-1),mod-2);
    38     ans%=mod;
    39     printf("%lld",ans);
    40     return 0;
    41 }
    View Code
  • 相关阅读:
    Layui表格之动态添加数据(表格多选解决方案)
    Ztree勾选节点后取消勾选其父子节点
    如何判断某个元素在页面上是否存在
    Linux环境搭建SVN服务
    Linux环境下验证码不显示F12报500
    Ztree节点前加上两个自定义按钮
    解决window.location.href参数太长
    Ztree加载完成默认选中根节点右侧生成表格
    输入框点击下滑Ztree菜单
    Mybatis中and和or的细节处理
  • 原文地址:https://www.cnblogs.com/2017SSY/p/10207411.html
Copyright © 2011-2022 走看看