zoukankan      html  css  js  c++  java
  • AI:华为云HiLens Kit试用测评—全栈全场景的人工智能

    导读:博主为CSDN社区的博客专家,目前拥有65000多的粉丝,曾经荣获十多项与人工智能相关的证书,也同时撰写了十多项发明专利和软件著作权。博主的主要的研究方向是机器学习和深度学习,尤其在深度学习领域,曾经做过很多与计算机视觉的目标检测和语义分割相关的案例,总结来说,对图像算法的理论研究比较多。

    11月中旬,博主有幸受邀对华为云最新的多模态人工智能开发套件—HiLens Kit设备做测评。博主将会从What、Why、How、Conclusion四个角度与大家分享一下HiLens Kit设备的使用感受。

    一、What

    根据官网的介绍,华为云HiLens,由具备AI推理能力的摄像头(如华为云多模态人工智能开发套件HiLens Kit)和云上开发平台组成,提供一站式技能开发、设备管理、数据管理、技能市场等,帮助用户开发AI技能并将其下发到端侧设备。

    华为云HiLens首批发布了5类应用场景,包含家庭、车载、园区、商超和其他等。涉及了25+的技能集,主要包含人脸/人形检测、人脸属性检测、异常声音检测、疲劳驾驶、人脸对比、车牌识别、入侵检测、人流热地图等。

    HiLens关键特性有以下四点:

    (1)、关键能力1:一站式Skill开发服务,快速定制行业应用;
    (2)、关键能力2:端侧算法开发框架HiLens Framework;
    (3)、关键能力3:自动模型转换、模型压缩优化;
    (4)、关键能力4:开放的技能市场及预置丰富的Skill技能。

    二、Why

    众所周知,传统视频分析流程一般是先通过智能IPC获取到设备,然后将视频流传到云端,最后通过云端存储与分析。其实,这样传统的方案会有以下几个缺点:

    (1)全景视频上云宽带成本高;
    (2)端侧仅能运算有限的算法;
    (3)算法与硬件存在强绑定的特点,AI技能的扩展性较弱;
    (4)用户对隐私数据上云较为敏感。

    与传统的视频分析流程相比,华为云HiLens的解决方案则是通过端侧设备结合智能IPC实现本地AI技能,视频帧传到云API,通过技能市场实现AI技能本地部署。对比传统方案,华为云的解决方案通过AI分析本地运行,大大降低成本。并且,端云协同实现的技能还可以按需进行加载和更新。当然,也支持第三方开发技能,同时保护隐私。

    华为HiLens平台的优势包含了端云协同推理、Skill开发框架、开箱即用的开发环境、跨平台设计、预置丰富的AI技能、开发者社区。

    三、How

    为了更加公正客观的测试HiLens Kit设备的性能,博主先后基于该设备采用了不同的技能进行了多次试验,在整个的试验测试过程中,一句话概括来讲,该设备的鲁棒性比较好并且性价比非常高。

    博主将会按照时间线的顺序分享一下测评感悟。从才开始拿到该设备,后续的注册、安装、连接、实景测试的整个流程进行详细讲解,以博主自己和朋友们的亲身体验,与大家分享一下这款能够几乎覆盖全场景应用的可扩展性AI设备。

    图1 华为HiLens设备

    HiLens Kit设备的轻巧使其部署更加灵活和方便。一开始,刚拿到该设备的时候,博主还是很惊讶的,虽然已经看过它的官方图片,但是HiLens Kit设备(如图1所示)比博主想象中还是要小得多,小巧玲珑的设计使得其应用变得更加灵活、广泛。

    外观造型有点像坦克,中间的摄像头可以调整拍摄角度,90度的范围。如图若是,设备两侧是散热孔,后端最右侧是开关按钮,向右依次是电源插口、两个USB接口、HDMI接口、RST键、耳机接口、SD卡插槽、网线接口。

    图2 网线和HDMI线

    HiLens Kit设备的安装需要观看官网教程,但实际操作起来也并不复杂。通过参考官网教程,几分钟就可以搞定。因为寄给博主的时候,没有附带额外的网线,于是,博主从某宝上买了一根网线,再加上博主已有的一根HDMI线,如图2所示。当这些材料准备齐全后,博主就进行了安装。安装之前,博主先是从官网上看了一遍安装和配置教程,其实比较简单,但是为了保证顺利安装,博主还是建议多看几遍安装教程。整个安装过程共有四个步骤:

    第一步,先用网线把HiLens Kit连接到了博主的电脑上。
    第二步,通过电脑配置HiLens Kit设备,将其设置到与电脑所在的同一个网段。
    第三步,利用Web端登录到设备,进入管理页面,进而来连接本地的WiFi。
    第四步,通过ssh登录到设备,实现注册,如图3。

    特别要注意的是,当博主进行到第四步操作的时候,出现了一个bug,大概的意思是没有权限访问资源。最后通过华为的客服人员告知,才发现是博主自己以前使用华为云服务的时候欠费所导致。当然只要华为云账户不欠费,就可以正常使用。当博主充上钱之后,重新登录,通过刷新设备列表,页面增加了新注册的设备!

    图3 设备注册

    于是,博主就迫不及待的去点击了技能市场按钮,依次进行测试了人形检测、人脸属性识别、人脸特效、静态手势识别、疲劳驾驶检测等技能,如列表1所示。其中人脸特效和静态手势识别技能更加有趣味性和交互性。

     表1 市场技能

    为了让大家对Hilens Kit设备性能有一个直观的感受,博主将会从以下四个主要场景的几个主要应用分别进行测试,分享一下使用华为Hilens Kit的过程和感受。

    1、智慧家庭—“AI”与呵护

    家庭+AI的应用,在未来将会越来越多,这种无微不至的智能关怀,会给家人带来更多的温馨。华为Hilens设备包含了人脸识别和陌生人检测、婴儿哭声检测、人体姿态检测技能,利用AI技术不仅及时有效的展示了对家的“爱”,更重要的是呵护了带有温度的家。

    下图是对人脸属性识别和静态手势检测技能进行测试的效果。

      图4 手势识别测试

    2、智能园区—“AI”与守护

    智能园区的场景中,Hilens设备集成了车牌识别、人形车辆检测、安全帽检测的技能,不仅提高了车辆通行效率,更重要的是守护了人身安全。其中,还包括了趣味性的交互技能,比如人脸特效检测,呈现带有酷炫眼镜和大金链子的视觉效果。

    下图是对人脸特效技能进行测试的效果。

      图5 人脸特效测试

    3、智能车载—“AI”与保护

    在智能驾驶领域,Hilens设备加入了人脸属性检测与识别、人脸对比、疲劳驾驶检测的技能。其中,人脸识别属性检测目前可检测到的属性分别是Age、Gender、Smile、Glasses、beard。

    下图是对人脸属性技能进行测试的效果。

     图6 人脸属性识别测试

    4、智能商超—“AI”与监护

    随着无人超市的兴起,现代化的智能商业超市的布局也越来越多。Hilens设备中的VIP识别、人形轨迹检测、客流量统计等技能为商户实现无人超市提供了最为便捷的服务。

    四、Conclusion

    总体来讲,Hilens Kit设备的实时性非常好,响应非常快,测试的几个技能几乎没有误检,小目标检测也比较鲁棒,准确率高,能够实现精准检测和识别。经过多次测试,除了性别属性有时候会误检之外,其余的几个场景测试效果非常好。

    在进行人脸属性实时检测时,即使博主实时的靠近和远离,Hilens Kit设备也几乎不会漏检,并且小目标检测效果也非常稳定,戴上眼镜与摘下眼镜也能实时区分,但是人脸的性别属性有时候会随着光线的变化存在误分类。在进行人脸特效测试时,自动带上戴上墨镜和大金链子的特效非常酷炫,增加了交互的趣味性,测试的时候没有漏检。在进行单目标静态手势识别的时候,不同手势的快速切换,实时检测也非常灵敏,测试的时候没有误检。

    Hilens Kit设备的可扩展性非常好。它能够辅助我们开发人员研发最新的AI技能,并将该技能快速下发到端侧设备,使得我们开发人员快速实现自己的idea。通过基于Hilens Kit设备的反复测试和改进,这种反馈性更能激励我们开发出更多更好的新技能,满足我们开发人员的成就感。使得我们技术人员不再单单是懂技术,而是更加直观感受了场景的业务需求,这种基于业务的理解会赋予我们开发人员拥有更多的优化技巧。

    当然,除了以上的优点,还有几点待改进的地方。首先,人脸的性别属性可以通过改进算法加强训练变得更加鲁棒。其次,在进行实时检测的时候,有时候会出现从散热器内产生的噪声,这一点也从侧面说明了AI设备的确需要较多的算力支持。众所周知,深度学习算法在进行实时推理的时候,大量的计算产生大量的热,所以需要及时散热。但是,如果考虑到价格因素,从性价比的角度,综合来说,Hilens Kit设备非常划算,值得购买。

    最后,感谢华为提供华为Hilens Kit的产品体验,以上是博主为广大粉丝朋友带来的分享。

    作者:一个处女座的程序猿

  • 相关阅读:
    CNCC2017中的深度学习与跨媒体智能
    CNCC2017梳理
    Keras Xception Multi loss 细粒度图像分类
    西瓜书概念整理(chapter 1-2)熟悉机器学习术语
    Google机器学习笔记(七)TF.Learn 手写文字识别
    Google机器学习笔记 4-5-6 分类器
    TensorFlow深度学习笔记 Tensorboard入门
    Ubuntu安装与初始配置
    TensorFlow深度学习笔记 循环神经网络实践
    第10组 Alpha冲刺(6/6)
  • 原文地址:https://www.cnblogs.com/2020-zhy-jzoj/p/13165090.html
Copyright © 2011-2022 走看看