题目传送门
很巧妙的一道题。对于一个 (n)位的 (01)字符串,一共有 (2^n)种不同字符排列,对于任意一个固定排列,在 (2^n)种排列中只有一种排列与该固定排列处处不等,而题干中的串长不超过 (1e6),小于 (2^{20}),也就是说所有长度为 (20)的子串不超过 (1e6)个,那我们只用让答案串的后 (20)位取一个与所有长度为 (20)的子串都“相交”的排列,前面都取 (0),这样字典序最小。
记录下每个长度为 (20)的子串它的排斥串,然后枚举 ([1,1<<20))找到最小的非排斥串作为答案串后 (20)位。注意只有遇见超过 (k-20)个连续 (1)时才记录排斥串,然后可能 (k)小于 (20)所以要取 (min(k,20))。
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
const int N = 1e6 + 5;
int T, n, k;
char s[N];
bool vis[N];
void solve(){
scanf("%d%d%s", &n, &k, s + 1);
int kk = min(k, 20);
vector<bool> rej(1 << kk, 0);
for(int i = 1, num = 0; i <= n - kk + 1; ++i){
if(num >= k - kk){
int sta = 0;
for(int t = 0; t < kk; ++t){
sta = sta * 2 + (s[i + t] != '1');
}
rej[sta] = 1;
}
num = (s[i] == '1' ? num + 1 : 0);
}
for(int i = 0; i < (1 << kk); ++i){
if(!rej[i]){
puts("YES");
for(int t = 1; t <= k - kk; ++t) putchar('0');
for(int t = kk - 1; ~t; --t) putchar((i & (1 << t)) ? '1' : '0');
puts("");
return ;
}
}
puts("NO");
}
int main(){
scanf("%d", &T);
while(T--) solve();
return 0;
}