题意:
思路:首先由容斥定理可得
红色箭头为反演步骤。
最后由数论分块来写。
#include <bits/stdc++.h> using namespace std; #define ll long long const int N = 50000; int mu[N + 5], p[N + 5]; bool flg[N + 5]; void init() { int tot = 0; mu[1] = 1; for (int i = 2; i <= N; ++i) { if (!flg[i]) { p[++tot] = i; mu[i] = -1; } for (int j = 1; j <= tot && i * p[j] <= N; ++j) { flg[i * p[j]] = 1; if (i % p[j] == 0) { mu[i * p[j]] = 0; break; } mu[i * p[j]] = -mu[i]; } } for (int i = 1; i <= N; ++i) mu[i] += mu[i - 1]; } int solve(int n, int m) { int res = 0; for (int i = 1, j; i <=min(n, m); i = j + 1) { j=min(n / (n / i), m / (m / i)); res += (mu[j] - mu[i - 1]) * (n / i) * (m / i); } return res; } int main() { int T, a, b, c, d, k; init(); for (scanf("%d", &T); T; --T) { scanf("%d%d%d%d%d", &a, &b, &c, &d, &k); printf("%d ", solve(b / k, d / k) - solve(b / k, (c - 1) / k) -solve((a - 1) / k, d / k) +solve((a - 1) / k, (c - 1) / k)); } return 0; }