zoukankan      html  css  js  c++  java
  • NOIP的模板--考前复习

    距离NOIP还有-1天

    可以去放弃一些巨难得题目去搞一些模板了

                  -------在校老师的原话

    一·快排

    虽然可以手打,最好用STL,里面有很多优化,会快很多

     1 #include<iostream>
     2 #include<algorithm>
     3 using namespace std;
     4 struct node
     5 {
     6     int x,y;
     7 }a[maxn];
     8 bool cmp(node a,node b)
     9 {
    10     return a.x<b.x;
    11 }
    12 int main()
    13 {
    14     sort(a+1,a+1+n,cmp);
    15     return 0;
    16  } 
    View Code

    二·冰茶姬

    一个很好用,很好压行的神奇初级(虽然难题是真的不会)黑科技。

    1  int find(int x){return x==fa[x]?x:fa[x]=find(fa[x]);}
    View Code

    三·快速幂||取模运算(就是快速幂里要取模)

     1 int KSM(int a,int b,int c)
     2 {
     3     int ans=1;a%=c;
     4     while(b>0)
     5     {
     6         if(b%2==1)ans=ans*a%c;
     7         b/=2;a=a*a%c;
     8     }
     9     return ans;    
    10 }
    View Code

    四·线性筛素数

    这题有很多方法,比如瞎搞,因为大于10的素数一定都在6的倍数的两边,至于证明什么的可以去找数竞。

    或者可以用埃筛(几乎是线性),或者用欧筛

    • 以6的倍数来搞事的判断方法:
    • 1 bool prime(int n)
      2 {
      3     if(n==1)return false;
      4     if(n==2||n==3)return true;
      5     if(n%6!=1&&n%6!=5)return false;
      6     for(int i=5;i*i<=n;i+=6)
      7     if(n%i==0||n%(i+2)==0)retrun false;
      8     return true;
      9 }
      View Code

      埃筛

    • 1 void make_prime()
      2 {
      3     memset(prime,true,sizeof(prime));
      4     prime[0]=prime[1]=false;
      5     int t=sqrt(MAXN);
      6     for(register int i=2;i<=t;i++)if(prime[i])
      7     for(register int j=2*i;j<MAXN,j+=i)
      8     prime[j]=false;
      9 }
      View Code

      欧筛

    •  1 void make_prime()
       2 {
       3     memset(prime,true,sizeof(prime));
       4     prime[0] = prime[1] = false;
       5     for( int i = 2; i <= MAXN; i++) {
       6         if( prime[i] ) Prime[ num ++ ] = i;
       7         for(int j = 0;j<num && i*Prime[j] < MAXN; j++) {
       8             prime[ i*Prime[j] ] = false;
       9             if( !( i%Prime[j] ) ) break;
      10         }
      11     }
      12     return;
      13 }
      View Code

      还有一些其他搞事的办法,但埃筛,一般就够用了

    五·最小生成树

    人生信条能打kruskal永远不打prim!!!!!!

     1 void kruskal()
     2 {
     3     int f1,f2,k,i;
     4     k=0;
     5     for(i=1;i<=n;i++)
     6     prt[i]=i;
     7     for(i=1;i<=m;i++)
     8     {
     9         f1=find(a[i].x);
    10         f2=find(a[i].y);
    11         if(f1!=f2)
    12         {
    13             ans=ans+a[i].z;
    14             prt[f1]=f2;
    15             k++;
    16             if(k==n-1)
    17             break;
    18         }
    19     }
    20     if(k<n-1)
    21     {
    22         cout<<"orz"<<endl;
    23         bj=0;
    24         return ;
    25     }
    26 }
    View Code

    六·单源最短路弱化版(SPFA)

    能打SPFA不打dijkstra!!!!!!!!

     1 inline void spfa(int k)
     2 {
     3     queue< int >q;
     4     dis[k] = 0; q.push(k); vis[k] = 0;
     5     while(!q.empty()) {
     6         x = q.front(); q.pop(); vis[x] = 0;
     7         for(int i = head[x]; i != 0; i = way[i].next ) {
     8             if(dis[x] + way[i].w < dis[way[i].to]) {
     9                 dis[way[i].to] = dis[x] + way[i].w;
    10                 if(vis[way[i].to] == 0) {
    11                     q.push(way[i].to);
    12                     vis[way[i].to] = 1;
    13                 }
    14             }
    15         }
    16     }
    17 }
    View Code

    七·树状数组

     1 int lowbit(int x)
     2 {
     3     return x&(-x);
     4 }
     5 int add(int x,int y)
     6 {
     7     while(x<=n)
     8     {
     9         c[x]+=y;
    10         x+=lowbit(x);
    11     }
    12 }
    13 int sum(int x)
    14 {
    15     int res=0;
    16     while(x>0)
    17     {
    18         res+=c[x];
    19         x-=lowbit(x);
    20     }
    21     return res;
    22 }
    View Code

    八·乘法逆元

    线性的,还有什么费马小,感觉没什么用,就没打

     1 int CFNY(int n)
     2 {
     3     inv[1]=1;
     4     cout<<1<<endl;
     5     for(int i=2;i<=n;i++)
     6     {
     7         inv[i]=(long long )(p-p/i)*inv[p%i]%p;
     8         cout<<inv[i]<<endl;
     9     }
    10 }
    View Code

    九·康托展开

    绝对没人会在NOIP考这个东西,要是他考了,以后就可以说 这很NOIP。。。。

     1 ll kangtuo(ll x[])
     2 {
     3     ll p=0;
     4     for(ll i=1;i<=n;i++)
     5     {
     6         ll t=0;
     7         for(ll j=i+1;j<=n;j++)
     8         {
     9             if(x[i]>x[j])
    10             {
    11                 t++;
    12             }
    13         }
    14         p+=t*fc[n-i];
    15     }
    16     return p+1;
    17 }
    View Code

    十·最近公共祖先(LCA)

     1 void dfs(int x,int father)//x为当前节点,father为其父节点 
     2 {
     3     deep[x]=deep[father]+1;//当前点的深度为其父节点深度加1 
     4     parents[x][0]=father;//当前点的2^0祖先(也就是上1级祖先)就是其父节点 
     5     for(int i=1;(1<<i)<=deep[x];i++)
     6     {
     7         parents[x][i]=parents[parents[x][i-1]][i-1];
     8         //这里应该是整个预处理阶段中最有灵魂的部分了
     9         //x的2^i级祖先就是x的2^(i-1)级祖先的2^(i-1)级的祖先 。
    10         //2^i==2^(i-1)+2^(i-1),这个式子好像没什么可说的 
    11     }
    12     for(int i=head[x];i;i=way[i].next)
    13     {
    14         int to=way[i].to;
    15         if(to!=father)
    16         dfs(to,x);
    17      } 
    18  } 
    19  
    20 int lca(int a,int b)//a,b为两个要查询的点 
    21 {
    22     if(deep[a]>deep[b])//我时刻保证a的深度比b的小 
    23     {
    24         swap(a,b); //如果反了就换一下 
    25     }
    26     for(int i=20;i>=0;i--)
    27     {
    28          if(deep[a]<=deep[b]-(1<<i)) 
    29          b=parents[b][i];//将a和b跳的同一高度 
    30     } 
    31     if(a==b)//如果b在跳上来时和a一样了,那说明a就是a和b的LCA,直接返回就行了 
    32     return a;
    33     for(int i=20;i>=0;i--)
    34     {
    35         if(parents[a][i]==parents[b][i])
    36         continue;
    37         else
    38         {
    39             a=parents[a][i];
    40             b=parents[b][i];//将a和b一起往上跳 
    41         }
    42     }
    43     return parents[a][0];//找出最后的答案 
    44 }
    View Code

    十一·卢卡斯

    只存在于组合数里的东西

     1 long long CC(long long n,long long m){
     2     if(m>n)
     3     return 0;
     4     return ((c[n]*KSM(c[m],p-2,p))%p*KSM(c[n-m],p-2,p)%p);
     5 }
     6 long long  Lucas(long long n,long long m){
     7     if(!m)
     8     return 1;
     9     return CC(n%p,m%p)*Lucas(n/p,m/p)%p;
    10 }
    View Code

    十二·二分图匹配

     1 int dfs(int t)
     2 {
     3     for (int i=1; i<=n2; ++i)
     4         if (a[t][i] == 1 && check[i] == 0)
     5         {
     6             check[i] = 1;
     7             if (p[i] == 0 || dfs(p[i]) == 1)
     8             {
     9                 p[i] = t;
    10                 return 1;
    11             }
    12         }
    13     return 0;
    14 }
    View Code

    十三·强连通分量(tarjan)

     1 void tarjan(int s)
     2 {
     3     dfn[s]=low[s]=++tim;
     4     in[s]=1,stack[++top]=s;
     5     for(int i=head[s];i;i=edge[i].next)
     6     {
     7         int v=edge[i].to;
     8         if(!dfn[v])
     9         {
    10             tarjan(v);
    11             low[s]=min(low[v],low[s]);
    12         }
    13         else if(in[v]&&low[s]>dfn[v])low[s]=dfn[v];
    14     }
    15     if(dfn[s]==low[s])
    16     {
    17         int p;
    18         belong[s]=++cnt;
    19         do
    20         {
    21             p=stack[top--];
    22             in[p]=0;
    23             belong[p]=cnt;
    24         }while(p!=s);
    25     }
    26 }
    View Code

     十四·割点(还是那个有名的tarjan)

     1 int tarjan(int x,int y)
     2 {
     3     low[x]=dfn[x]=++tim;
     4     int child=0;
     5     for(int i=head[x];i;i=way[i].next)
     6     {
     7         int v=way[i].to ;
     8         if(!dfn[v])
     9         {
    10             tarjan(v,y);
    11             low[x]=min(low[x],low[v]);
    12             if(dfn[x]<=low[v]&&x!=y)
    13             {
    14                 cut[x]=1;
    15             }
    16             if(x==y)
    17             {
    18                 child++;
    19             }
    20         }
    21         low[x]=min(low[x],dfn[v]);
    22         if(child>=2&&x==y)
    23         {
    24             cut[x]=1;
    25         }
    26     }
    27 }
    View Code

     十五·对拍之造数据(maker)Windows下

    eg. 2个正整数x0,y0

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 int main()
     4 {
     5     freopen("data.in","w",stdout);
     6     srand(time(NULL));
     7     int n=rand();
     8     int m=rand();//可以在这里加模数来控制范围 
     9     cout<<n<<" "<<m<<endl;
    10 }
    View Code

     十六·对拍之检查(check)Windows下

    这个在用之前一定要先把所有的程序先跑一下,然后一定要在同一各根目录下,不然有可能会用一些很神奇的东西把源程序给覆盖掉

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 int main()
     4 {
     5     while(1)
     6     {
     7         system("maker");
     8         system("true");
     9         system("false");
    10         if(system("fc false.out true.out")
    11         {
    12             cout<<"WA"<<endl;
    13             break;
    14         }
    15         cout<<"AC"<<endl;
    16     }
    17     return 0;
    18  } 
    View Code

     十七·缩点(还是那个tarjan)

     1 void tarjan(int x)
     2 {
     3     low[x]=dfn[x]=++tim;
     4     stac[++top]=x;
     5     vis[x]=1;
     6     for(int i=head[x];i;i=edge[i].next)
     7     {
     8         int v=edge[i].to;
     9         if(!dfn[v])
    10         {
    11             tarjan(v);
    12             low[x]=min(low[x],low[v]);
    13         }
    14         else if(vis[v])
    15         {
    16             low[x]=min(low[x],dfn[v]);
    17         }
    18     }
    19     if(dfn[x]==low[x])
    20     {
    21         int y;
    22         while(y=stac[top--])
    23         {
    24             sd[y]=x;
    25             vis[y]=0;
    26             if(x==y)
    27             break;
    28             p[x]+=p[y];
    29         }
    30     }
    31 }
    View Code

     十八·网络最大流(很NOIP的一个东西)

     1 int bfs()
     2 {
     3     memset(deep,0x3f,sizeof(deep));
     4     memset(in,0,sizeof(in));
     5     deep[s]=0;
     6     queue<int >q;
     7     q.push(s);
     8     while(!q.empty())
     9     {
    10         int x=q.front();
    11         q.pop();
    12         in[x]=0;
    13         for(int i=head[x];i;i=way[i].next)
    14         {
    15             int v=way[i].to;
    16             if(deep[v]>deep[x]+1&&way[i].value)
    17             {
    18                 deep[v]=deep[x]+1;
    19                 if(in[v]==0)
    20                 {
    21                     q.push(v);
    22                     in[v]=1;
    23                 }
    24             }
    25         }
    26     }
    27     if(deep[t]!=0x3f3f3f3f)
    28     return 1;
    29     return 0;
    30 }
    31 int dfs(int x,int y)
    32 {
    33     ans=0;
    34     if(x==t)
    35     return y;
    36     for(int i=head[x];i;i=way[i].next)
    37     {
    38         int v=way[i].to;
    39         if(way[i].value&&deep[v]==deep[x]+1)
    40         {
    41             if(ans=dfs(v,min(y,way[i].value)))
    42             {
    43                 way[i].value-=ans;
    44                 way[i^1].value+=ans;
    45                 return ans;
    46             }
    47         }
    48     }
    49     return 0;
    50 }
    51 int dinic()
    52 {
    53     low=0;
    54     while(bfs())
    55     {
    56         while(low=dfs(s,inf))
    57         maxnn+=low;
    58     }
    59     return maxnn;
    60 }
    View Code

    十九·最小费用最大流

     1 int spfa()
     2 {
     3     memset(dis,0x3f,sizeof(dis));
     4     memset(pre,0,sizeof(pre));
     5     memset(in,0,sizeof(in));
     6     queue<int >q;
     7     q.push(s);
     8     in[s]=1;
     9     dis[s]=0;
    10     while(!q.empty())
    11     {
    12         int x=q.front();
    13         q.pop();
    14         in[x]=0;
    15         for(int i=head[x];i;i=way[i].next)
    16         {
    17             int v=way[i].to;
    18             int w=way[i].cost;
    19             if(way[i].value>0&&dis[v]>dis[x]+w)
    20             {
    21                 dis[v]=dis[x]+w;
    22                 pre[v].from=x;
    23                 pre[v].edge=i;
    24                 if(in[v]==0)
    25                 {
    26                     q.push(v);
    27                     in[v]=1;
    28                 }
    29             }
    30         }
    31     }
    32     return dis[t]!=0x3f3f3f3f;
    33 }
    34 int ek()
    35 {
    36     ans=0;
    37     cost=0;
    38     int mi;
    39     int i;
    40     while(spfa())
    41     {
    42         mi=inf;
    43         for(i=t;i!=s;i=pre[i].from)
    44         {
    45             mi=min(mi,way[pre[i].edge].value);
    46         }
    47         for(i=t;i!=s;i=pre[i].from)
    48         {
    49             way[pre[i].edge].value-=mi;
    50             way[pre[i].edge^1].value+=mi;
    51         }
    52         ans+=mi;
    53         cost+=mi*dis[t];
    54     }    
    55     return ans;
    56 }
    View Code

    二十·高精度加减乘除模

      1 #include <bits/stdc++.h>
      2 using namespace std;
      3 struct Big
      4 {
      5     static const int BASE = 100000000;
      6     static const int WIDTH = 8;
      7     vector<long long> s;
      8     Big()
      9     {
     10         *this = 0;
     11     }
     12     Big(const int &num)
     13     {
     14         *this = num;
     15     }
     16 
     17     Big operator=(int num)
     18     {
     19         s.clear();
     20         do
     21         {
     22             s.push_back(num % BASE);
     23             num /= BASE;
     24         } while (num > 0);
     25         return *this;
     26     }
     27     Big operator=(const string &str)
     28     {
     29         s.clear();
     30         int x, len = (str.length() - 1) / WIDTH + 1;
     31         for (int i = 0; i < len; i++)
     32         {
     33             int end = str.length() - i * WIDTH;
     34             int start = max(0, end - WIDTH);
     35             sscanf(str.substr(start, end - start).c_str(), "%lld", &x);
     36             s.push_back(x);
     37         }
     38         return *this;
     39     }
     40     bool operator<(const Big &b)
     41     {
     42         if (s.size() < b.s.size())
     43             return true;
     44         if (s.size() > b.s.size())
     45             return false;
     46         for (int i = s.size() - 1; i >= 0; i--)
     47         {
     48             if (s[i] < b.s[i])
     49                 return true;
     50             if (s[i] > b.s[i])
     51                 return false;
     52         }
     53         return false;
     54     }
     55     bool operator>=(const Big &b)
     56     {
     57         return !(*this < b);
     58     }
     59     bool operator==(const Big &b)
     60     {
     61         if (s.size() != b.s.size())
     62             return false;
     63         for (int i = 0; i < s.size(); i++)
     64             if (s[i] != b.s[i])
     65                 return false;
     66         return true;
     67     }
     68     Big operator+(const Big &b)
     69     {
     70         Big c;
     71         c.s.clear();
     72         for (int i = 0, g = 0;; i++)
     73         {
     74             if (g == 0 && i >= s.size() && i >= b.s.size())
     75                 break;
     76             int x = g;
     77             if (i < s.size())
     78                 x += s[i];
     79             if (i < b.s.size())
     80                 x += b.s[i];
     81             c.s.push_back(x % BASE);
     82             g = x / BASE;
     83         }
     84         return c;
     85     }
     86     Big operator-(const Big &b)
     87     {
     88         Big c;
     89         c = *this;
     90         for (int i = 0; i < c.s.size(); i++)
     91         {
     92             int tmp;
     93             if (i >= b.s.size())
     94                 tmp = 0;
     95             else
     96                 tmp = b.s[i];
     97             if (c.s[i] < tmp)
     98             {
     99                 c.s[i + 1] -= 1;
    100                 c.s[i] += BASE;
    101             }
    102             c.s[i] -= tmp;
    103         }
    104         while (c.s.back() == 0 && c.s.size() > 1)
    105             c.s.pop_back();
    106         return c;
    107     }
    108     void operator-=(const Big &b)
    109     {
    110         *this = *this - b;
    111     }
    112     Big operator*(const Big &b)
    113     {
    114         Big c;
    115         c.s.resize(s.size() + b.s.size());
    116         for (int i = 0; i < s.size(); i++)
    117             for (int j = 0; j < b.s.size(); j++)
    118                 c.s[i + j] += s[i] * b.s[j];
    119         for (int i = 0; i < c.s.size() - 1; i++)
    120         {
    121             c.s[i + 1] += c.s[i] / BASE;
    122             c.s[i] %= BASE;
    123         }
    124         while (c.s.back() == 0 && c.s.size() > 1)
    125             c.s.pop_back();
    126         return c;
    127     }
    128     friend istream &operator>>(istream &input, Big &x)
    129     {
    130         string s;
    131         if (!(input >> s))
    132             return input;
    133         x = s;
    134         return input;
    135     }
    136     friend ostream &operator<<(ostream &output, const Big &x)
    137     {
    138         output << x.s.back();
    139         for (int i = x.s.size() - 2; i >= 0; i--)
    140         {
    141             char buf[20];
    142             sprintf(buf, "%08d", x.s[i]);
    143             for (int j = 0; j < strlen(buf); j++)
    144                 output << buf[j];
    145         }
    146         return output;
    147     }
    148 };
    149 Big Copy(const Big &b, int x)
    150 {
    151     Big t;
    152     t.s.resize(b.s.size() + x);
    153     for (int i = 0; i < b.s.size(); i++)
    154         t.s[i + x] = b.s[i];
    155     return t;
    156 }
    157 Big Divide(const Big &a, const Big &b, Big &mod)
    158 {
    159     Big c;
    160     c.s.resize(a.s.size() - b.s.size() + 1);
    161     mod = a;
    162     int Pow[(int)log2(Big::BASE) + 5];
    163     Pow[0] = 1;
    164     for (int i = 1; i <= log2(Big::BASE); i++)
    165         Pow[i] = Pow[i - 1] * 2;
    166     for (int i = c.s.size() - 1; i >= 0; i--)
    167     {
    168         Big t;
    169         t = Copy(b, i);
    170         for (int j = log2(Big::BASE); j >= 0; j--)
    171             if (mod >= t * Pow[j])
    172             {
    173                 c.s[i] += Pow[j];
    174                 mod -= t * Pow[j];
    175             }
    176     }
    177     while (c.s.back() == 0 && c.s.size() > 1)
    178         c.s.pop_back();
    179     return c;
    180 }
    181 Big a, b;
    182 int main()
    183 {
    184     cin >> a >> b;
    185     if (a < b)
    186         cout << a + b << endl << '-' << b - a << endl<< a * b << endl << 0 << endl << a << endl;
    187     else
    188     {
    189         Big c, d;
    190         c = Divide(a, b, d);
    191         cout << a + b << endl << a - b << endl << a * b << endl << c << endl << d << endl;
    192     }
    193     return 0;
    194 }
    高精度

     二十一. 最大公约数和最小公倍数

    1 int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); }
    2 int lcm(int a,int b)
    3 {
    4     a * b / gcd(a, b);
    5 }
    View Code

     二十二.简单乘法(防止因为乘数过大而爆long long)和快速幂

     1 int muti(int a,int b)//乘法,防止乘数太大爆long long 
     2 {
     3     int ans=0;
     4     while(b)
     5     {
     6         if(b&1)
     7         {
     8             ans=(ans+a)%mod;
     9         }
    10         a=(a+a)%mod;
    11         b>>=1;
    12     }
    13     return ans;
    14 }
    15 int KSM(int a,int b)//快速幂 
    16 {
    17     int ans=1;
    18     while(b)
    19     {
    20         if(b&1)
    21         {
    22             ans=nuti(ans,a);
    23         }
    24         a=muti(a,a);
    25         b>>=1;
    26     }
    27     return ans;
    28 }
    View Code

    二十三.质因数分解

     1 int devide(int x)//质因数分解 
     2 {
     3     for(int i=1;i<=sum&&prime[i]*prime[i]<=x;++i)
     4     {
     5         while(x%prime[i]==0)
     6         {
     7             x/=prime[i];
     8             cout<<prime[i]<<" ";
     9         }
    10     }
    11     if(x!=1)
    12     {
    13         cout<<x<<" ";
    14     }
    15     
    16 }
    View Code

    二十四.拓展欧里几德

     1 void exgcd(int a,int b,int &x,int &y)//拓展欧里几德 
     2 {
     3     if(!b)
     4     {
     5         x=1;
     6         y=0;
     7         return ;
     8     }
     9     exgcd(b,a%b,y,x);
    10     y-=a/b*x;
    11 } 
    View Code

    二十五.逆元的几种求法

    • 快速幂版

     1 inv=KSM(x,Mod-2);//逆元 (快速幂版) 

    • 拓展欧里几德版

     1 exgcd(x,Mod,inv,y); 2 inv=(inv+Mod)%Mod; //(x必须与mod互质) 

    • 线性求逆元,公式版
    1 inv[1]=1;//线性公式 
    2 for(i=2;i<=n;++i)
    3     inv[i]=1ll*(Mod-Mod/i)*inv[Mod%i]%Mod; 

    二十六.floyd

     1 int floyd()
     2 {
     3     for(int k=1;k<=n;k++)
     4     {
     5         for(int i=1;i<=n;i++)
     6         {
     7             for(int j=1;j<=n;j++)
     8             {
     9                 a[i][j]=min(a[i][j],a[i][k]+a[k][j]);
    10             }
    11         }
    12     }
    13 }
    View Code

    二十七·最短路之几个瞎搞模板

     1 void spfa(int s)
     2 {
     3     int x, y, i;
     4     memset(dis, 0x3f, sizeof(dis));
     5     queue<int> q;
     6     q.push(s);
     7     dis[s] = 0;
     8     while (!q.empty())
     9     {
    10         x = q.front();
    11         q.pop();
    12         vis[x] = false;
    13         for (i = head[x]; i; i = way[i].next)
    14         {
    15             y = way[i].to;
    16             if (dis[y] > dis[x] + way[i].value)
    17             {
    18                 dis[y] = dis[x] + way[i].value;
    19                 if (!vis[y])
    20                 {
    21                     q.push(y);
    22                     vis[y] = true;
    23                 }
    24             }
    25         }
    26     }
    27 }
    spfa
     1 priority_queue<pair<int, int>> q;
     2 void dijkstra(int s)
     3 {
     4     int x, y, i;
     5     memset(dis, 0x3f, sizeof(dis));
     6     q.push(make_pair(0, s));
     7     dis[s] = 0;
     8     while (!q.empty())
     9     {
    10         x = q.top().second;
    11         q.pop();
    12         for (i = head[x]; i; i = way[i].next)
    13         {
    14             y = way[i].to;
    15             if (dis[y] > dis[x] + way[i].value)
    16             {
    17                 dis[y] = dis[x] + way[i].value;
    18                 q.push(make_pair(-dis[y], y));
    19             }
    20         }
    21     }
    22 }
    dijkstra

    二十八· 二分集合

     1 int l = 0;
     2     int r = maxx;
     3     while (l < r) 
     4     {
     5         int mid = (l + r) >> 1;
     6         if (check(mid))
     7         {
     8             r = mid;
     9         }
    10         else
    11         {
    12             l = mid + 1;
    13         }
    14     }
    二分最小值
     1 while (l < r)
     2     {
     3         int mid = (l + r) >> 1;
     4         if (check(mid))
     5         {
     6             l = mid;
     7         }
     8         else
     9         {
    10             r = mid - 1;
    11         }
    12     }
    二分最大值
     1 while (l + eps < r) 
     2     {
     3         double mid = (l + r) >> 1;
     4         if (check(mid))
     5         {
     6             r = mid;
     7         }
     8         else
     9         {
    10             l = mid;
    11         }
    12     }
    实数域二分

    二十九· 树状数组求逆序对个数

    1    for (int i = 1; i <= n; ++i)
    2     {
    3         cin >> x;
    4         add(x, 1);
    5         ans += i - sum(x);
    6     }
    树状数组求逆序对

    三十·01背包

    1 for (i = 1; i <= n; ++i)//背包 n为物品数,m为物品体积
    2     {
    3         cin >> v >> w;
    4         for (j = m; j >= v; --j)
    5             f[j] = max(f[j], f[j - v] + w);
    6     }
    7     cout << f[m] << endl;
    01背包

    三十一·完全背包

    1  for (i = 1; i <= n; ++i)
    2     {
    3         cin >> v >> w; //背包 n为物品数,m为物品体积
    4         for (j = v; j <= m; ++j)
    5             f[j] = max(f[j], f[j - v] + w);
    6     }
    7     cout << f[m] << endl;
    完全背包

    三十二 ·最长上升子序列

    1 d[k = 1] = a[1];//a是原序列,n为长度,k为最长上升子序列的长度
    2     for (i = 2; i <= n; ++i)
    3     {
    4         if (d[k] < a[i])
    5             d[++k] = a[i];
    6         else
    7             d[lower_bound(d + 1, d + k + 1, a[i]) - d] = a[i];
    8     }
    9     cout << k << endl;
    最长上升子序列

    三十三·最长公共子序列长度

     1 for (i = 1; i <= n; ++i)//串为a b,长度为n m
     2     {
     3         for (j = 1; j <= m; ++j)
     4         {
     5             if (A[i] == B[j])
     6                 f[i][j] = f[i - 1][j - 1] + 1;
     7             else
     8                 f[i][j] = max(f[i - 1][j], f[i][j - 1]);
     9         }
    10     }
    11     cout << f[n][m] << endl;
    最长公共子序列

    三十三·最长公共上升子序列

     1 B[0] = -inf;//一切概念均同上;
     2     for (i = 1; i <= n; ++i)
     3     {
     4         if (B[0] < A[i])
     5             num = f[i - 1][0];
     6         for (j = 1; j <= m; ++j)
     7         {
     8             if (A[i] == B[j])
     9                 f[i][j] = num + 1;
    10             else
    11                 f[i][j] = f[i - 1][j];
    12             if (B[j] < A[i])
    13                 num = max(num, f[i - 1][j]);
    14         }
    15     }
    16     int ans = -inf;
    17     for (i = 1; i <= m; ++i)
    18         ans = max(ans, f[n][i]);
    19     printf("%d", ans);
    最长公共上升子序列

    三十四· 倍增求LCA(必背,容易打错,一定要return)

     1 int pre() //LCA
     2 {
     3     for (int j = 1; j <= 18; j++)
     4     {
     5         for (int i = 1; i <= n; i++)
     6         {
     7             fa[i][j] = fa[fa[i][j - 1]][j - 1];
     8         }
     9     }
    10 }
    11 int lca(int x)
    12 {
    13     int i;
    14     if (deep[x] < deep[y])
    15     {
    16         swap(x, y);
    17     }
    18     for (int i = 18; ~i; --i)
    19     {
    20         if (deep[fa[x][i]] >= deep[y])
    21         {
    22             x = fa[x][i];
    23         }
    24     }
    25     if (x == y)
    26     {
    27         return x;
    28     }
    29     for (int i = 18; ~i; --i)
    30     {
    31         if (fa[x][i] != fa[y][i])
    32         {
    33             x = fa[x][i];
    34             y = fa[y][i];
    35         }
    36     }
    37     return fa[x][0];
    38 }
    LCA

    三十五·树的直径(两次dfs就可以了)

     1 int dfs(int x) //树的直径 只要两次dfs就可以了。
     2 {
     3     int i, j;
     4     if (ans < d[x])
     5     {
     6         ans = d[x];
     7         p = x;
     8     }
     9     for (int i = head[x]; i; i = way[i].next)
    10     {
    11         j = v[i];
    12         if (j != father)
    13         {
    14             d[j] = d[x] += w[i];
    15             dfs(j, x);
    16         }
    17     }
    18 }
    19 void solve()
    20 {
    21     ans = 0;
    22     d[1] = 0;
    23     dfs(1, 0);
    24     ans = 0;
    25     d[p] = 0;
    26     dfs(p, 0);
    27     cout << ans << endl;
    28 }
    树的直径

     三十六·树的重心

     1 void dfs(int x, int father)//树的重心
     2 {
     3     int i, j;
     4     Max[x] = 0, size[x] = 1;
     5     for (i = head[x]; i; i = way[i].next)
     6     {
     7         j = way[i].to;
     8         if (j != father)
     9         {
    10             dfs(j, x);
    11             size[x] += size[j];
    12             Max[x] = max(Max[x], size[j]);
    13         }
    14     }
    15     Max[x] = max(Max[x], n - size[x]);
    16     if (num > Max[x])
    17     {
    18         pos = x;
    19         num = Max[x];
    20     }
    21 }
    树的重心

     三十七·LCA树链剖分版,要稳定一些

     1 #include <iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 using namespace std;
     5 const int maxn = 5e5 + 10;
     6 
     7 int num, size[maxn], deep[maxn], fa[maxn], top[maxn], n, m, p, a, b;
     8 struct node
     9 {
    10     int to;
    11     int value;
    12     int next;
    13 }way[maxn<<1];
    14 int tot = 0;
    15 int head[maxn];
    16 int add(int x,int y)
    17 {
    18     way[++tot].next = head[x];
    19     way[tot].to = y;
    20     head[x] = tot;
    21 }
    22 int dfs1(int x)
    23 {
    24     size[x] = 1;
    25     deep[x] = deep[fa[x]] + 1;
    26     for (int i = head[x]; i;i=way[i].next)
    27     {
    28         if(fa[x]!=way[i].to)
    29         {
    30             fa[way[i].to] = x;
    31             dfs1(way[i].to);
    32             size[x] += size[way[i].to];
    33         }
    34     }
    35 }
    36 int dfs2(int x)
    37 {
    38     int maxx = 0;
    39     if(!top[x])
    40     {
    41         top[x] = x;
    42     }
    43     for (int i = head[x]; i;i=way[i].next)
    44     {
    45         if (fa[x] != way[i].to && size[way[i].to] > size[maxx])
    46         {
    47             maxx = way[i].to;
    48         }
    49     }
    50     if(maxx)
    51     {
    52         top[maxx] = top[x];
    53         dfs2(maxx);
    54     }
    55     for (int i = head[x]; i; i = way[i].next)
    56     {
    57         if(way[i].to!=maxx&&fa[x]!=way[i].to)
    58         {
    59             dfs2(way[i].to);
    60         }
    61     }
    62 }
    63 int lca(int x,int y)
    64 {
    65     while(top[x]!=top[y])
    66     {
    67         if(deep[top[x]]<deep[top[y]])
    68         {
    69             swap(x, y);
    70         }
    71         x = fa[top[x]];
    72     }
    73     if(deep[x]<deep[y])
    74     {
    75         return x;
    76     }
    77     return y;
    78 }
    79 int main()
    80 {
    81     ios::sync_with_stdio(false);
    82     cin >> n >> m >> p;
    83     for (int i = 1; i < n;i++)
    84     {
    85         cin >> a >> b;
    86         add(a, b);
    87         add(b, a);
    88     }
    89     dfs1(p);
    90     dfs2(p);
    91     for (int i = 1; i <= m;i++)
    92     {
    93         cin >> a >> b;
    94         cout << lca(a, b) << endl;
    95     }
    96     return 0;
    97 }
    LCA

     三十八·字典树

    • 存树
    1 struct node
    2 {
    3     int son[26];
    4     int num;
    5 } a[maxn];
    View Code
    • 插入
     1 void Insert()
     2 {
     3     int l, i, p = 0;
     4     l = strlen(s);
     5     for (i = 0; i < l; ++i)
     6     {
     7         if (a[p].son[s[i] - 'a'] == 0)
     8             a[p].son[s[i] - 'a'] = ++t;
     9         p = a[p].son[s[i] - 'a'];
    10         a[p].num++;
    11 
    12     }
    13 }
    View Code
    • 查询
     1 int find()
     2 {
     3     int l, i, p = 0;
     4     l = strlen(s);
     5     for (i = 0; i < l; ++i)
     6     {
     7         if (a[p].son[s[i] - 'a'] == 0)
     8             return 0;
     9         p = a[p].son[s[i] - 'a'];
    10     }
    11     return a[p].num;
    12 }
    View Code

    三十九· 字符串hash

    1 long long Hash()//base 是基数 ans 是hash值 l是长度 s[i]是第i个字符
    2 {
    3     long long  ans = 0;
    4     for (int i = 0; i < l; ++i)
    5         ans = ans * base + s[i];
    6     return ans;
    7 }
    View Code

     四十·线段树1

     1 #include<iostream>
     2 using namespace std;
     3 const int maxn = 1e6 + 10;
     4 int a[maxn + 2];
     5 struct node
     6 {
     7     int l, r;
     8     long long pre, add;
     9 } tree[maxn];
    10 
    11 void build(int x,int l,int r)
    12 {
    13     tree[x].l = l;
    14     tree[x].r = r;
    15     if(l==r)
    16     {
    17         tree[x].pre = a[l];
    18         return;
    19     }
    20     int mid = (l + r) >> 1;
    21     build(x * 2, l, mid);
    22     build(x * 2 + 1, mid + 1, r);
    23     tree[x].pre = tree[x * 2].pre + tree[x * 2 + 1].pre;
    24 }
    25 void spread(int p)
    26 {
    27     if (tree[p].add)
    28     {
    29         tree[p * 2].pre += tree[p].add * (tree[p * 2].r - tree[p * 2].l + 1);
    30         tree[p * 2 + 1].pre += tree[p].add * (tree[p * 2 + 1].r - tree[p * 2 + 1].l + 1);
    31         tree[p * 2].add += tree[p].add;
    32         tree[p * 2 + 1].add += tree[p].add;
    33         tree[p].add = 0;
    34     }
    35 }
    36 void add(int p, int x, int y, int z)
    37 {
    38     if (x <= tree[p].l && y >= tree[p].r)
    39     {
    40         tree[p].pre += (long long)z * (tree[p].r - tree[p].l + 1);
    41         tree[p].add += z;
    42         return;
    43     }
    44     spread(p);
    45     int mid = tree[p].l + tree[p].r >> 1;
    46     if (x <= mid)
    47         add(p * 2, x, y, z);
    48     if (y > mid)
    49         add(p * 2 + 1, x, y, z);
    50     tree[p].pre = tree[p * 2].pre + tree[p * 2 + 1].pre;
    51 }
    52 long long sum(int p, int x, int y)
    53 {
    54     if (x <= tree[p].l && y >= tree[p].r)
    55         return tree[p].pre;
    56     spread(p);
    57     int mid = tree[p].l + tree[p].r >> 1;
    58     long long ans = 0;
    59     if (x <= mid)
    60         ans += sum(p * 2, x, y);
    61     if (y > mid)
    62         ans += sum(p * 2 + 1, x, y);
    63     return ans;
    64 }
    65 int main()
    66 {
    67     int n, m;
    68     cin >> n >> m;
    69     for (int i = 1;i<=n;i++)
    70     {
    71         cin >> a[i];
    72     }
    73     build(1, 1, n);
    74     for (int i = 1;i<=m;i++)
    75     {
    76         int q, x, y, z;
    77         cin >> q;
    78         if(q==1)
    79         {
    80             cin >> x >> y >> z;
    81             add(1, x, y, z);
    82         }
    83         else
    84         {
    85             cin >> x >> y;
    86             cout << sum(1, x, y) << endl;
    87         }
    88     }
    89     return 0;
    90 }
    View Code

     四十一·矩阵快速幂

     1 #include <iostream>
     2 #include <cstring>
     3 #define mod 1000000007
     4 #define ll long long
     5 using namespace std;
     6 struct Mat
     7 {
     8     ll m[101][101];
     9 };        
    10 Mat a, e; 
    11 ll n, p;
    12 Mat Mul(Mat x, Mat y) 
    13 {
    14     Mat c;
    15     for (int i = 1; i <= n; i++)
    16     {
    17         for (int j = 1; j <= n; j++)
    18         {
    19              c.m[i][j] = 0;
    20         }
    21     }
    22     for (int i = 1; i <= n; i++)
    23     {
    24         for (int j = 1; j <= n; j++)
    25         {
    26              for (int k = 1; k <= n; k++)
    27              {
    28                  c.m[i][j] = c.m[i][j] % mod + x.m[i][k] * y.m[k][j] % mod;
    29              }
    30         }
    31     }
    32     return c;
    33 }
    34 Mat pow(Mat x, ll y) 
    35 {
    36     Mat ans = e;
    37     while (y)
    38     {
    39         if (y & 1)
    40             ans = Mul(ans, x);
    41         x = Mul(x, x);
    42         y >>= 1;
    43     }
    44     return ans;
    45 }
    46 
    47 int main()
    48 {
    49     cin >> n >> p;
    50     for (int i = 1; i <= n; i++)
    51     {
    52         for (int j = 1; j <= n; j++)
    53         {
    54             cin >> a.m[i][j];
    55         }
    56     }
    57     for (int i = 1; i <= n; i++)
    58     {
    59         e.m[i][i] = 1;
    60     }
    61     Mat ans = pow(a, p);
    62     for (int i = 1; i <= n; i++)
    63     {
    64         for (int j = 1; j <= n; j++)
    65         {
    66             cout << ans.m[i][j] % mod << " ";
    67         }
    68         cout << endl;
    69     }
    70     return 0;
    71 }
    View Code

     四十二·退役前最后的一次更新  进制转换,10 转其他

     1 #include<iostream>
     2 #include<cstdio>
     3 using namespace std;
     4 int n,m;
     5 char f[20] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'};
     6 void  zhuan(int n,int m)
     7 {
     8     if(n==0)
     9     {
    10         return;
    11     }
    12     if(n>0||n%m==0)
    13     {
    14         zhuan(n / m, m);
    15         cout << f[n % m];
    16     }
    17     else
    18     {
    19         zhuan(n / m + 1, m);
    20         cout << f[-m+n % m];
    21     }
    22     
    23 }
    24 int main()
    25 {
    26     cin >> n;
    27     cin >> m;
    28     cout << n << "=";
    29     zhuan(n, m);
    30     cout << "(base" << m << ")" << endl;
    31     return 0;
    32 }
    View Code
  • 相关阅读:
    RabbitMQ 安装
    字符串转换
    sqlserver 远程链接
    力软框架 接口映射的时候不能修改添加接口原因
    json串处理2
    版本比较,数据库存储
    各种分页方法推荐
    生成数据库编号重复问题
    从统计局抓取2016年最新的全国区县数据!!
    “集群和负载均衡”等的通俗解释
  • 原文地址:https://www.cnblogs.com/2529102757ab/p/11722456.html
Copyright © 2011-2022 走看看