zoukankan      html  css  js  c++  java
  • 自动下载和安装 MNIST 到 TensorFlow 的 python 源码 (转)

        # Copyright 2015 Google Inc. All Rights Reserved.  
        #  
        # Licensed under the Apache License, Version 2.0 (the "License");  
        # you may not use this file except in compliance with the License.  
        # You may obtain a copy of the License at  
        #  
        #     http://www.apache.org/licenses/LICENSE-2.0  
        #  
        # Unless required by applicable law or agreed to in writing, software  
        # distributed under the License is distributed on an "AS IS" BASIS,  
        # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
        # See the License for the specific language governing permissions and  
        # limitations under the License.  
        # ==============================================================================  
        """Functions for downloading and reading MNIST data."""  
        from __future__ import absolute_import  
        from __future__ import division  
        from __future__ import print_function  
        import gzip  
        import os  
        import tensorflow.python.platform  
        import numpy  
        from six.moves import urllib  
        from six.moves import xrange  # pylint: disable=redefined-builtin  
        import tensorflow as tf  
        SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'  
        def maybe_download(filename, work_directory):  
          """Download the data from Yann's website, unless it's already here."""  
          if not os.path.exists(work_directory):  
            os.mkdir(work_directory)  
          filepath = os.path.join(work_directory, filename)  
          if not os.path.exists(filepath):  
            filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)  
            statinfo = os.stat(filepath)  
            print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')  
          return filepath  
        def _read32(bytestream):  
          dt = numpy.dtype(numpy.uint32).newbyteorder('>')  
          return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]  
        def extract_images(filename):  
          """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""  
          print('Extracting', filename)  
          with gzip.open(filename) as bytestream:  
            magic = _read32(bytestream)  
            if magic != 2051:  
              raise ValueError(  
                  'Invalid magic number %d in MNIST image file: %s' %  
                  (magic, filename))  
            num_images = _read32(bytestream)  
            rows = _read32(bytestream)  
            cols = _read32(bytestream)  
            buf = bytestream.read(rows * cols * num_images)  
            data = numpy.frombuffer(buf, dtype=numpy.uint8)  
            data = data.reshape(num_images, rows, cols, 1)  
            return data  
        def dense_to_one_hot(labels_dense, num_classes=10):  
          """Convert class labels from scalars to one-hot vectors."""  
          num_labels = labels_dense.shape[0]  
          index_offset = numpy.arange(num_labels) * num_classes  
          labels_one_hot = numpy.zeros((num_labels, num_classes))  
          labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1  
          return labels_one_hot  
        def extract_labels(filename, one_hot=False):  
          """Extract the labels into a 1D uint8 numpy array [index]."""  
          print('Extracting', filename)  
          with gzip.open(filename) as bytestream:  
            magic = _read32(bytestream)  
            if magic != 2049:  
              raise ValueError(  
                  'Invalid magic number %d in MNIST label file: %s' %  
                  (magic, filename))  
            num_items = _read32(bytestream)  
            buf = bytestream.read(num_items)  
            labels = numpy.frombuffer(buf, dtype=numpy.uint8)  
            if one_hot:  
              return dense_to_one_hot(labels)  
            return labels  
        class DataSet(object):  
          def __init__(self, images, labels, fake_data=False, one_hot=False,  
                       dtype=tf.float32):  
            """Construct a DataSet. 
            one_hot arg is used only if fake_data is true.  `dtype` can be either 
            `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into 
            `[0, 1]`. 
            """  
            dtype = tf.as_dtype(dtype).base_dtype  
            if dtype not in (tf.uint8, tf.float32):  
              raise TypeError('Invalid image dtype %r, expected uint8 or float32' %  
                              dtype)  
            if fake_data:  
              self._num_examples = 10000  
              self.one_hot = one_hot  
            else:  
              assert images.shape[0] == labels.shape[0], (  
                  'images.shape: %s labels.shape: %s' % (images.shape,  
                                                         labels.shape))  
              self._num_examples = images.shape[0]  
              # Convert shape from [num examples, rows, columns, depth]  
              # to [num examples, rows*columns] (assuming depth == 1)  
              assert images.shape[3] == 1  
              images = images.reshape(images.shape[0],  
                                      images.shape[1] * images.shape[2])  
              if dtype == tf.float32:  
                # Convert from [0, 255] -> [0.0, 1.0].  
                images = images.astype(numpy.float32)  
                images = numpy.multiply(images, 1.0 / 255.0)  
            self._images = images  
            self._labels = labels  
            self._epochs_completed = 0  
            self._index_in_epoch = 0  
          @property  
          def images(self):  
            return self._images  
          @property  
          def labels(self):  
            return self._labels  
          @property  
          def num_examples(self):  
            return self._num_examples  
          @property  
          def epochs_completed(self):  
            return self._epochs_completed  
          def next_batch(self, batch_size, fake_data=False):  
            """Return the next `batch_size` examples from this data set."""  
            if fake_data:  
              fake_image = [1] * 784  
              if self.one_hot:  
                fake_label = [1] + [0] * 9  
              else:  
                fake_label = 0  
              return [fake_image for _ in xrange(batch_size)], [  
                  fake_label for _ in xrange(batch_size)]  
            start = self._index_in_epoch  
            self._index_in_epoch += batch_size  
            if self._index_in_epoch > self._num_examples:  
              # Finished epoch  
              self._epochs_completed += 1  
              # Shuffle the data  
              perm = numpy.arange(self._num_examples)  
              numpy.random.shuffle(perm)  
              self._images = self._images[perm]  
              self._labels = self._labels[perm]  
              # Start next epoch  
              start = 0  
              self._index_in_epoch = batch_size  
              assert batch_size <= self._num_examples  
            end = self._index_in_epoch  
            return self._images[start:end], self._labels[start:end]  
        def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):  
          class DataSets(object):  
            pass  
          data_sets = DataSets()  
          if fake_data:  
            def fake():  
              return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)  
            data_sets.train = fake()  
            data_sets.validation = fake()  
            data_sets.test = fake()  
            return data_sets  
          TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'  
          TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'  
          TEST_IMAGES = 't10k-images-idx3-ubyte.gz'  
          TEST_LABELS = 't10k-labels-idx1-ubyte.gz'  
          VALIDATION_SIZE = 5000  
          local_file = maybe_download(TRAIN_IMAGES, train_dir)  
          train_images = extract_images(local_file)  
          local_file = maybe_download(TRAIN_LABELS, train_dir)  
          train_labels = extract_labels(local_file, one_hot=one_hot)  
          local_file = maybe_download(TEST_IMAGES, train_dir)  
          test_images = extract_images(local_file)  
          local_file = maybe_download(TEST_LABELS, train_dir)  
          test_labels = extract_labels(local_file, one_hot=one_hot)  
          validation_images = train_images[:VALIDATION_SIZE]  
          validation_labels = train_labels[:VALIDATION_SIZE]  
          train_images = train_images[VALIDATION_SIZE:]  
          train_labels = train_labels[VALIDATION_SIZE:]  
          data_sets.train = DataSet(train_images, train_labels, dtype=dtype)  
          data_sets.validation = DataSet(validation_images, validation_labels,  
                                         dtype=dtype)  
          data_sets.test = DataSet(test_images, test_labels, dtype=dtype)  
          return data_sets  
  • 相关阅读:
    温故而知新-错误和异常处理
    温故而知新-面向对象的PHP
    Django框架之模板语法【转载】
    django2.0实现数据详情页展示的流程
    django2.0表的ORM字段类型和展示
    Fatal error: Cannot use object of type PHPExcel_RichText as array
    django2.0数据展示流程
    django2.0模板相关设置
    django2.0新增功能流程
    django2.0设置默认访问路由
  • 原文地址:https://www.cnblogs.com/25miao/p/7324092.html
Copyright © 2011-2022 走看看