zoukankan      html  css  js  c++  java
  • LeetCode 63. Unique Paths II Java

    题目:

    Follow up for "Unique Paths":

    Now consider if some obstacles are added to the grids. How many unique paths would there be?

    An obstacle and empty space is marked as 1 and 0 respectively in the grid.

    For example,

    There is one obstacle in the middle of a 3x3 grid as illustrated below.

    [
      [0,0,0],
      [0,1,0],
      [0,0,0]
    ]

    The total number of unique paths is 2.

    Note: m and n will be at most 100.

    题意:给出一个二维格子,其中值为1的点表示障碍点,要求求出从最左上角的点到最右下角的点有多少种走法。使用动态规划,对于其中一个点obstacleGrid[i][j](1<i<m,i<j<n),到该点的走法为d(obstacleGrid[i][j])=d(obstacleGrid[i-1][j])+d(obstacleGrid[i][j-1]),对于第一行和第一列,如果该点前面有障碍点,那么到到此点有0中方法,反之为1。遍历数组即可求解。

    代码:

    public class Solution {
        public int uniquePathsWithObstacles(int[][] obstacleGrid) {
            int row = obstacleGrid.length;
            if(row ==0) return 0;
            int col = obstacleGrid[0].length;
            int[][] res = new int[row][col];
            for(int i=0;i<row;i++){
                for(int j=0;j<col;j++){
                    if(obstacleGrid[i][j]==1) {
                        res[i][j] = 0;
                        continue;
                    }
                    if(i==0 || j==0){
                        if(j!=0){
                            res[i][j] =  res[i][j-1];
                        }else if(i!=0){
                            res[i][j] =  res[i-1][j];
                        }else{
                            res[i][j] =  1;
                        }
                    }else{
                        res[i][j] = res[i-1][j] + res[i][j-1];
                    }
                }
            }
            return res[row-1][col-1];
        }
    }
    

      

      

  • 相关阅读:
    apache的源代码编译安装
    python学习笔记(五) 200行实现2048小游戏
    python学习笔记(四) 思考和准备
    python学习笔记(三)高级特性
    python自学笔记(二)
    python自学笔记(一)
    redis 配置和使用(C++)
    汇编基础最后一篇--机器语言指令
    汇编语言学习笔记(六)
    网络编程学习方法和图书推荐
  • 原文地址:https://www.cnblogs.com/271934Liao/p/6915666.html
Copyright © 2011-2022 走看看