题目:
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great"
:
great
/
gr eat
/ /
g r e at
/
a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr"
and swap its two children, it produces a scrambled string "rgeat"
.
rgeat
/
rg eat
/ /
r g e at
/
a t
We say that "rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes "eat"
and "at"
, it produces a scrambled string "rgtae"
.
rgtae
/
rg tae
/ /
r g ta e
/
t a
We say that "rgtae"
is a scrambled string of "great"
.
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
题意及分析:一个字符串可以递归分割成任意两个非空字符串,任意交换其中两个非叶子节点,得到一个新字符串,这个新字符串就称作字符串的scrambled strin。给出两个字符串S1和s2,判断s2是不是s1的scramble string,如果s2是s1的scramble串,那么必然存在一个在s1上的长度l1,将s1分成s11和s12两段,同样有s21和s22。那么只有两种可能:(1)s11和s21是scramble且s12和s22是scramble (2)s11和s22是scramble且s12和s21是scramble
代码:
class Solution { public boolean isScramble(String s1, String s2) { if (s1.equals(s2)) return true; int length = s1.length(); int[] count = new int[26]; for(int i=0;i<length;i++){ count[s1.charAt(i)-'a'] ++; count[s2.charAt(i)-'a'] --; } for(int i=0; i<26; i++) { if(count[i]!=0) return false; } for(int i=1;i<length;i++){ if (isScramble(s1.substring(0,i), s2.substring(0,i)) && isScramble(s1.substring(i), s2.substring(i))) return true; if (isScramble(s1.substring(0,i), s2.substring(length-i)) && isScramble(s1.substring(i), s2.substring(0,length-i))) return true; } return false; } }