zoukankan      html  css  js  c++  java
  • hdu 1787 GCD Again

    GCD Again

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1391    Accepted Submission(s): 518


    Problem Description
    Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?
    No? Oh, you must do this when you want to become a "Big Cattle".
    Now you will find that this problem is so familiar:
    The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem:
    Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
    This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
    Good Luck!
     
    
    
    Input
    Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
     
    
    
    Output
    For each integers N you should output the number of integers M in one line, and with one line of output for each line in input.
     
    
    
    Sample Input
    2 4 0
     
    
    
    Sample Output
    0 1
     
    
    
    Author
    lcy
     
    
    
    Source
     
    
    
    Recommend
    lcy
     
    //欧拉函数

    #include
    <iostream> #include <stdio.h> #include <string.h> #include <algorithm> #include <queue> #include <cmath> using namespace std; int hash[10003]; int rc[1300]; void del() { int i,j,k=1; for(i=4;i<10000;i+=2) hash[i]=1; rc[0]=2; for(i=3;i<10000;i+=2) if(!hash[i]) { rc[k++]=i; for(j=i+i;j<10000;j+=i) hash[j]=1; } // printf("%d",k); } int ss(int n) { int i=0; double fc=n; bool b; for(i=0;i<1229;i++) { b=0; while(n%rc[i]==0) { b=1; n=n/rc[i]; } if(b) fc*=(1.0-1.0/rc[i]); } if(n>1) fc*=(1.0-1.0/n); return int(fc+0.5); } int main() { del(); // printf("%d ",10000007%941); int n; while(scanf("%d",&n),n) { printf("%d\n",n-ss(n)-1); } return 0; }
  • 相关阅读:
    Python之美[从菜鸟到高手]--Python垃圾回收机制及gc模块详解
    linux-memory-buffer-vs-cache
    MYSQL----myownstars(102)
    win10系统调用架构分析
    on io scheduling again
    Java并发编程
    elixir-lang
    mydumper工作原理, seconds_behind_master的陷阱和pt-heartbeat (102)
    深入理解JavaScript系列+ 深入理解javascript之执行上下文
    我们应该如何去了解JavaScript引擎的工作原理 系列
  • 原文地址:https://www.cnblogs.com/372465774y/p/2609362.html
Copyright © 2011-2022 走看看