zoukankan      html  css  js  c++  java
  • POJ 3264 Balanced Lineup RMQ问题的ST解法

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 24349   Accepted: 11348
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q.
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

    RMQ问题的ST解法、第一次用,1Y,呵呵
    开学后课好多,课程任务好重、都没什么时间做题目、学算法、烦呀

    #include <iostream> #include <stdio.h> #define N 50010 #include <cmath> using namespace std; int f_min[N][18]; int f_max[N][18]; int main() { // cout<<(1<<16); int n,q; int i,j,k,t; int h,l; // printf("%d ",k); while(scanf("%d %d",&n,&q)!=EOF) { for(i=1;i<=n;i++) { scanf("%d",&f_min[i][0]); f_max[i][0]=f_min[i][0]; } k=(int)(log(n*1.0)/log(2*1.0)); for(i=1;i<=k;i++) { t=(1<<i); for(j=1;j<=n-t+1;j++) { f_max[j][i]=max(f_max[j][i-1],f_max[j+t/2][i-1]); f_min[j][i]=min(f_min[j][i-1],f_min[j+t/2][i-1]); } } while(q--) { scanf("%d %d",&i,&j); k=(int)(log((j-i+1)*1.0)/log(2*1.0)); t=(1<<k); h=max(f_max[i][k],f_max[j-t+1][k]); l=min(f_min[i][k],f_min[j-t+1][k]); printf("%d\n",h-l); } } return 0; }
  • 相关阅读:
    JavaScript:for循环中let与var变量的绑定
    ECAMScript中的let和const
    HTML中的a标签
    jQuery中的事件处理(移除绑定)
    jQuery中的事件处理(事件绑定)
    jQuery中的事件处理(页面加载响应事件)
    jQuery对元素的CSS样式操作(通过修改CSS属性实现)
    jQuery对元素的CSS样式操作(通过修改CSS类实现)
    jQuery对DOM节点进行操作(包裹节点)
    jQuery对DOM节点进行操作(遍历节点)
  • 原文地址:https://www.cnblogs.com/372465774y/p/2687032.html
Copyright © 2011-2022 走看看