zoukankan      html  css  js  c++  java
  • POJ 3264 Balanced Lineup RMQ问题的ST解法

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 24349   Accepted: 11348
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q.
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

    RMQ问题的ST解法、第一次用,1Y,呵呵
    开学后课好多,课程任务好重、都没什么时间做题目、学算法、烦呀

    #include <iostream> #include <stdio.h> #define N 50010 #include <cmath> using namespace std; int f_min[N][18]; int f_max[N][18]; int main() { // cout<<(1<<16); int n,q; int i,j,k,t; int h,l; // printf("%d ",k); while(scanf("%d %d",&n,&q)!=EOF) { for(i=1;i<=n;i++) { scanf("%d",&f_min[i][0]); f_max[i][0]=f_min[i][0]; } k=(int)(log(n*1.0)/log(2*1.0)); for(i=1;i<=k;i++) { t=(1<<i); for(j=1;j<=n-t+1;j++) { f_max[j][i]=max(f_max[j][i-1],f_max[j+t/2][i-1]); f_min[j][i]=min(f_min[j][i-1],f_min[j+t/2][i-1]); } } while(q--) { scanf("%d %d",&i,&j); k=(int)(log((j-i+1)*1.0)/log(2*1.0)); t=(1<<k); h=max(f_max[i][k],f_max[j-t+1][k]); l=min(f_min[i][k],f_min[j-t+1][k]); printf("%d\n",h-l); } } return 0; }
  • 相关阅读:
    BestCoder6 1002 Goffi and Squary Partition(hdu 4982) 解题报告
    codeforces 31C Schedule 解题报告
    codeforces 462C Appleman and Toastman 解题报告
    codeforces 460C. Present 解题报告
    BestCoder3 1002 BestCoder Sequence(hdu 4908) 解题报告
    BestCoder3 1001 Task schedule(hdu 4907) 解题报告
    poj 1195 Mobile phones 解题报告
    二维树状数组 探索进行中
    codeforces 460B Little Dima and Equation 解题报告
    通过Sql语句控制SQLite数据库增删改查
  • 原文地址:https://www.cnblogs.com/372465774y/p/2687032.html
Copyright © 2011-2022 走看看