zoukankan      html  css  js  c++  java
  • POJ 3264 Balanced Lineup RMQ问题的ST解法

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 24349   Accepted: 11348
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q.
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

    RMQ问题的ST解法、第一次用,1Y,呵呵
    开学后课好多,课程任务好重、都没什么时间做题目、学算法、烦呀

    #include <iostream> #include <stdio.h> #define N 50010 #include <cmath> using namespace std; int f_min[N][18]; int f_max[N][18]; int main() { // cout<<(1<<16); int n,q; int i,j,k,t; int h,l; // printf("%d ",k); while(scanf("%d %d",&n,&q)!=EOF) { for(i=1;i<=n;i++) { scanf("%d",&f_min[i][0]); f_max[i][0]=f_min[i][0]; } k=(int)(log(n*1.0)/log(2*1.0)); for(i=1;i<=k;i++) { t=(1<<i); for(j=1;j<=n-t+1;j++) { f_max[j][i]=max(f_max[j][i-1],f_max[j+t/2][i-1]); f_min[j][i]=min(f_min[j][i-1],f_min[j+t/2][i-1]); } } while(q--) { scanf("%d %d",&i,&j); k=(int)(log((j-i+1)*1.0)/log(2*1.0)); t=(1<<k); h=max(f_max[i][k],f_max[j-t+1][k]); l=min(f_min[i][k],f_min[j-t+1][k]); printf("%d\n",h-l); } } return 0; }
  • 相关阅读:
    专业的户外直播视频传输系统是如何搭建起来的?通过GB28181协议建立的户外直播方案
    Go-注释
    语言的动态性和静态性
    程序&命名-执行环境
    Go-错误栈信息
    Mongo-文档主键-ObjectId
    Mongo-关系型VS非关系型
    数据-CRUD
    Mongo基本操作
    mongo环境搭建
  • 原文地址:https://www.cnblogs.com/372465774y/p/2687032.html
Copyright © 2011-2022 走看看