zoukankan      html  css  js  c++  java
  • Hdu 4407 Sum

    Sum

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 897    Accepted Submission(s): 259
    Problem Description
    XXX is puzzled with the question below:

    1, 2, 3, ..., n (1<=n<=400000) are placed in a line. There are m (1<=m<=1000) operations of two kinds.

    Operation 1: among the x-th number to the y-th number (inclusive), get the sum of the numbers which are co-prime with p( 1 <=p <= 400000).
    Operation 2: change the x-th number to c( 1 <=c <= 400000).

    For each operation, XXX will spend a lot of time to treat it. So he wants to ask you to help him.
     
    
    
    Input
    There are several test cases.
    The first line in the input is an integer indicating the number of test cases.
    For each case, the first line begins with two integers --- the above mentioned n and m.
    Each the following m lines contains an operation.
    Operation 1 is in this format: "1 x y p".
    Operation 2 is in this format: "2 x c".
     
    
    
    Output
    For each operation 1, output a single integer in one line representing the result.
     
    
    
    Sample Input
    1
    3 3
    2 2 3
    1 1 3 4
    1 2 3 6
     
    
    
    Sample Output
    7
    0
     
    
    
    Source
     
    
    
    Recommend
    zhoujiaqi2010
    参考思路
    http://www.cnblogs.com/Lyush/archive/2012/09/22/2698448.html

    #include <iostream> #include <map> #include <stdio.h> #include <math.h> #include <string.h> #include <stdlib.h> #include <algorithm> using namespace std; bool h[700]; int p[200]; void prime() { int cnt=1; int i,j; p[0]=2; for(i=2;i<=700;i+=2) h[i]=1; for(i=3;i<=700;i+=2) if(!h[i]) { p[cnt++]=i; for(j=i*i;j<=700;j+=i) h[j]=1; } } int gcd(int a,int b) { int r; while(r=a%b){a=b;b=r;} return b; } __int64 solve(__int64 n,__int64 pp) { if(n==0) return 0; int i,j; int rc[10],cnt=0; int m=(int)sqrt(pp*1.0); for(i=0;p[i]<=m;i++) { if(pp%p[i]==0) rc[cnt++]=p[i]; while(pp%p[i]==0)pp=pp/p[i]; if(pp==1) break; } if(pp>1) rc[cnt++]=pp; int w=(1<<cnt); int js; __int64 k=0; __int64 ans=0,cj; for(i=1;i<w;i++)//关键点、将容斥原理的关系转换成二进制、这个还是第一次接触、纪念下 { cj=1; for(js=j=0;j<cnt;j++) if(i&(1<<j)) { js++; cj*=rc[j]; } k=n/cj; if(js&1) ans+=((cj+cj*k)*k)/2; else ans-=((cj+cj*k)*k)/2; } return ans; } map <int,int> mp; map <int,int>::iterator it; int main() { prime(); int T; int n,m; __int64 op,x,y,p; __int64 sum; scanf("%d",&T); while(T--) { scanf("%d %d",&n,&m); while(m--) { scanf("%I64d",&op); if(op==1) { scanf("%I64d %I64d %I64d",&x,&y,&p); sum=(y-x+1)*(x+y)>>1; for(it=mp.begin();it!=mp.end();it++) 此题关键点是m很小、才1000 if(it->first>=x) { if(it->first>y) break; sum-=gcd(it->first,p)==1?it->first:0; sum+=gcd(it->second,p)==1?it->second:0; } sum-=(solve(y,p)-solve(x-1,p)); printf("%I64d\n",sum); } else { scanf("%I64d %I64d",&x,&y); mp[x]=y; } } mp.clear(); } return 0; }
  • 相关阅读:
    高等代数中的名词解析No1
    概率论中的名词解释(个人理解,非官方) No1
    概率论中的公式解释(个人理解,非官方) No1
    CentOS7 网络设置
    神经网络与人工智能No0导言(笔记版)
    centos7 防火墙设置
    神经网络与人工智能No1Rosenblatt感知器(笔记版)
    输入法打不出来的数学符号大全
    php对xml文件的解析
    PHPExcel生成Excel模版
  • 原文地址:https://www.cnblogs.com/372465774y/p/2731497.html
Copyright © 2011-2022 走看看