zoukankan      html  css  js  c++  java
  • hdu 4282 A very hard mathematic problem

    A very hard mathematic problem

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2489    Accepted Submission(s): 728


    Problem Description
      Haoren is very good at solving mathematic problems. Today he is working a problem like this:
      Find three positive integers X, Y and Z (X < Y, Z > 1) that holds
       X^Z + Y^Z + XYZ = K
      where K is another given integer.
      Here the operator “^” means power, e.g., 2^3 = 2 * 2 * 2.
      Finding a solution is quite easy to Haoren. Now he wants to challenge more: What’s the total number of different solutions?
      Surprisingly, he is unable to solve this one. It seems that it’s really a very hard mathematic problem.
      Now, it’s your turn.
     
    Input
      There are multiple test cases.
      For each case, there is only one integer K (0 < K < 2^31) in a line.
      K = 0 implies the end of input.
      
     
    Output
      Output the total number of solutions in a line for each test case.
     
    Sample Input
    9
    53
    6
    0
     
    Sample Output
    1
    1
    0   
    Hint
    9 = 1^2 + 2^2 + 1 * 2 * 2
    53 = 2^3 + 3^3 + 2 * 3 * 3
     
    Source
     
    Recommend
    liuyiding
     
     

    解法 枚举 z,x,二分查找 y
    用pow() 984ms (差点超时,吓死了)
    自己用二进制快速次方算 531ms
    看来这个浮点运算真是挺慢滴

    984MS

    #include <iostream> #include <map> #include <stdio.h> #include <math.h> #include <string.h> #include <stdlib.h> #include <algorithm> using namespace std; int k; int del(__int64 x,__int64 y,int z) { int m=(int)pow(k*1.0,1.0/z); if(y>m) return 1; __int64 sum=(__int64)pow(x*1.0,z*1.0)+(__int64)pow(y*1.0,z*1.0); sum+=x*y*z; if(sum>k) return 1; if(sum<k) return -1; // printf("%I64d %I64d %d %I64d ",x,y,z,sum); return 0; } bool ok(int x,int z) { int l=x+1,r=50000,m,flag; while(l<=r)//二分查找 { m=(l+r)>>1; flag=del(x,m,z); if(flag>0) r=m-1; else if(flag<0) l=m+1; else return true; } return false; } int main() { __int64 x,z; while(scanf("%d",&k),k) { __int64 cnt=0; __int64 s; for(z=2;;z++) { s=(__int64)pow(2.0,z*1.0); if(s>=k) break; for(x=1;;x++) { s=(__int64)pow(x*1.0,z*1.0); s=s*2+(__int64)x*x*z; if(s>=k) break; if(ok(x,z)) cnt++; } } printf("%I64d\n",cnt); } return 0; }


    531MS
    #include <iostream>
    #include <map>
    #include <stdio.h>
    #include <math.h>
    #include <string.h>
    #include <stdlib.h>
    #include <algorithm>
    using namespace std;
    int k;
    __int64 Pw(__int64 a,int b)
    {
         __int64 t=1;
        for(;b>0;b=(b>>1),a=(a*a))
           if(b&1) t=t*a;
        return t;
    }
    int del(__int64 x,__int64 y,int z)
    {
        int m=(int)pow(k*1.0,1.0/z);
        if(y>m) return 1;
        __int64 sum=Pw(x,z)+Pw(y,z);
        sum+=x*y*z;
        if(sum>k) return 1;
        if(sum<k) return -1;
        return 0;
    }
    bool ok(int x,int z)
    {
        int l=x+1,r=50000,m,flag;
        while(l<=r)
        {
            m=(l+r)>>1;
            flag=del(x,m,z);
            if(flag>0) r=m-1;
            else if(flag<0) l=m+1;
            else return true;
        }
        return false;
    }
    int main()
    {
         __int64 x,z;
    
         while(scanf("%d",&k),k)
         {
             __int64 cnt=0;
             __int64 s;
             for(z=2;;z++)
             {
                  s=Pw(2,z);
                 if(s>=k) break;
                 for(x=1;;x++)
                 {
                     s=Pw(x,z);
                     s=s*2+x*x*z;
                     if(s>=k) break;
                     if(ok(x,z)) cnt++;
                 }
             }
             printf("%I64d\n",cnt);
         }
        return 0;
    }
     
  • 相关阅读:
    LINK : fatal error LNK1123: 转换到 COFF 期间失败: 文件无效或损坏
    RTSP可用网络流
    Linux访问Github缓慢
    Ubu18.0-NVIDIA显卡驱动重装
    FFMPEG第一次学习
    QT-守护程序
    QT-局域网探测工具(简易版)--Ping
    QT-notepad++仿写
    Ubuntu 解压文件
    Ubuntu -换源
  • 原文地址:https://www.cnblogs.com/372465774y/p/2734097.html
Copyright © 2011-2022 走看看