zoukankan      html  css  js  c++  java
  • poj 1192 最优连通子集



    最优连通子集 Time Limit: 1000MS Memory Limit: 10000K Total Submissions:
    1940 Accepted: 1018 Description 众所周知,我们可以通过直角坐标系把平面上的任何一个点P用一个有序数对(x, y)来唯一表示,如果x, y都是整数,我们就把点P称为整点,否则点P称为非整点。我们把平面上所有整点构成的集合记为W。 定义1 两个整点P1(x1, y1), P2(x2, y2),若|x1-x2| + |y1-y2| = 1,则称P1, P2相邻,记作P1~P2,否则称P1, P2不相邻。 定义 2 设点集S是W的一个有限子集,即S = {P1, P2,..., Pn}(n >= 1),其中Pi(1 <= i <= n)属于W,我们把S称为整点集。 定义 3 设S是一个整点集,若点R, T属于S,且存在一个有限的点序列Q1, Q2, ?, Qk满足: 1. Qi属于S(1 <= i <= k); 2. Q1 = R, Qk = T; 3. Qi~Qi + 1(1 <= i <= k-1),即Qi与Qi + 1相邻; 4. 对于任何1 <= i < j <= k有Qi ≠ Qj; 我们则称点R与点T在整点集S上连通,把点序列Q1, Q2,..., Qk称为整点集S中连接点R与点T的一条道路。 定义4 若整点集V满足:对于V中的任何两个整点,V中有且仅有一条连接这两点的道路,则V称为单整点集。 定义5 对于平面上的每一个整点,我们可以赋予它一个整数,作为该点的权,于是我们把一个整点集中所有点的权的总和称为该整点集的权和。 我们希望对于给定的一个单整点集V,求出一个V的最优连通子集B,满足: 1. B是V的子集 2. 对于B中的任何两个整点,在B中连通; 3. B是满足条件(1)和(2)的所有整点集中权和最大的。 Input 第1行是一个整数N(2 <= N <= 1000),表示单整点集V中点的个数; 以下N行中,第i行(1 <= i <= N)有三个整数,Xi, Yi, Ci依次表示第i个点的横坐标,纵坐标和权。同一行相邻两数之间用一个空格分隔。-10^6 <= Xi, Yi <= 10^6;-100 <= Ci <= 100。 Output 仅一个整数,表示所求最优连通集的权和。 Sample Input 5 0 0 -2 0 1 1 1 0 1 0 -1 1 -1 0 1 Sample Output 2 Source Noi 99
    树形Dp
    dp[i][0]代表不含该点i的最大子树和
    dp[i][1]代表含该点i的最大子树和
    #include <iostream>
    #include <stdio.h>
    #include <queue>
    #include <stack>
    #include <set>
    #include <vector>
    #include <math.h>
    #include <string.h>
    #include <algorithm>
    using namespace std;
    #define N 1002
    structnode
    {
        int next;
        int to;
        int weight;
    }Eg[N<<3];
    int v[N];
    int rc[N][3];
    int n;
    int nu;
    int dp[N][2];
    bool visit[N];
    void dfs(int u)
    {
       visit[u]=1;
       int e,vv;
       for(e=v[u];e!=-1;e=Eg[e].next)
       {
           if(!visit[Eg[e].to])
           {  vv=Eg[e].to;
              visit[vv]=1;
              dfs(vv);
              dp[u][0]=max(dp[u][0],max(dp[vv][0],dp[vv][1]));
              if(dp[vv][1]>0)
               dp[u][1]+=dp[vv][1];
           }
       }
    }
    int main()
    {
        //int n;
    
        while(scanf("%d",&n)!=EOF)
        {
            int i,j;
            int a,b;
            for(i=0;i<n;i++)
             {
                 scanf("%d %d %d",&rc[i][0],&rc[i][1],&rc[i][2]);
                 dp[i][1]=rc[i][2];visit[i]=false;dp[i][0]=0;
             }
            memset(v,-1,sizeof(v));
            nu=0;
            for(i=0;i<n;i++)
             for(j=i+1;j<n;j++)
              {
                  a=rc[i][0]-rc[j][0];a=a>=0?a:-a;
                  b=rc[i][1]-rc[j][1];b=b>=0?b:-b;
                  if(a+b==1)
                  {
                    Eg[nu].to=j;
                    Eg[nu].weight=rc[i][2]+rc[j][2];
                    Eg[nu].next=v[i];
                    v[i]=nu++;
                    Eg[nu].to=i;
                    Eg[nu].weight=rc[i][2]+rc[j][2];
                    Eg[nu].next=v[j];
                    v[j]=nu++;
                  }
              }
           dfs(0);
           printf("%d\n",max(dp[0][0],dp[0][01]));
        }
        return 0;
    }
     
  • 相关阅读:
    变量
    词频统计
    Python文件处理
    python面试题
    函数及组合数据类型
    位(bit)、字节(byte)、字符、编码之间的关系
    程序的控制结构
    Python:turtle库的使用及图形绘制
    Dynamics 365 CRM Connected Field Service 不能接收IoT Alert
    Dynamics 365 CRM 部署 Connected Field Service
  • 原文地址:https://www.cnblogs.com/372465774y/p/2777610.html
Copyright © 2011-2022 走看看