zoukankan      html  css  js  c++  java
  • poj 3268 Silver Cow Party

    Silver Cow Party
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 9222   Accepted: 4156

    Description

    One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ XN). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

    Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

    Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

    Input

    Line 1: Three space-separated integers, respectively: N, M, and X
    Lines 2..M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

    Output

    Line 1: One integer: the maximum of time any one cow must walk.

    Sample Input

    4 8 2
    1 2 4
    1 3 2
    1 4 7
    2 1 1
    2 3 5
    3 1 2
    3 4 4
    4 2 3

    Sample Output

    10

    Hint

    Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

    Source

    和上一题一样的做法
    只是题目要求的输出结果不同

    #include <iostream> #include <stdio.h> #include <queue> #include <stack> #include <set> #include <vector> #include <math.h> #include <string.h> #include <algorithm> using namespace std; #define N 100002 #define Max 1000000002 struct node { int to; int next; int value; }Eg[N]; struct Record { int x,y; int value; }rc[N]; int dis1[1002],dis2[1002]; int v[1002]; bool b[1002]; int n,m,x; void SFPA(int dis[]) { memset(b,0,sizeof(b)); queue<int> Q; Q.push(x); b[x]=1; int e,i,k; while(!Q.empty()) { i=Q.front(); Q.pop(); b[i]=0; for(e=v[i];e!=-1;e=Eg[e].next) { k=Eg[e].to; if(dis[k]>dis[i]+Eg[e].value) { if(!b[k]) { Q.push(k); b[k]=1; } dis[k]=dis[i]+Eg[e].value; } } } } int main() { int i; while(scanf("%d %d %d",&n,&m,&x)!=EOF) { for(i=1;i<=n;i++) v[i]=-1; for(i=0;i<m;i++) { scanf("%d %d %d",&rc[i].x,&rc[i].y,&rc[i].value); Eg[i].value=rc[i].value; Eg[i].to=rc[i].y; Eg[i].next=v[rc[i].x]; v[rc[i].x]=i; } for(i=1;i<=n;i++) dis1[i]=Max; dis1[x]=0; SFPA(dis1); __int64 ans=0; for(i=1;i<=n;i++) v[i]=-1; for(i=0;i<m;i++) { Eg[i].value=rc[i].value; Eg[i].to=rc[i].x; Eg[i].next=v[rc[i].y]; v[rc[i].y]=i; } for(i=1;i<=n;i++) dis2[i]=Max; dis2[x]=0; SFPA(dis2); for(i=1;i<=n;i++) { dis1[i]+=dis2[i]; ans=ans>dis1[i]?ans:dis1[i]; } printf("%I64d\n",ans); } return 0; }
  • 相关阅读:
    自动化框架总结-2(转)
    svn离线安装以及配置,管理python自动化脚本
    自动化框架总结-1(转)
    pytest参数化、标记用例、生成html报告
    pytest作为前置和后置的使用
    笔记:常用xpath
    read_ini.py
    深入理解python类装饰器和带参数装饰器
    Python 03-Python3基础语法
    Python 02-Python2.x与3.x版本区别
  • 原文地址:https://www.cnblogs.com/372465774y/p/2779872.html
Copyright © 2011-2022 走看看