zoukankan      html  css  js  c++  java
  • DataFrame的groupby()

    有这样一张表,“non_response_num”是真实非应答次数,“predict_non_response_num”是模型预测的非应答次数。

    想计算每个时间片内不同group_id的所有hex_center的MAE值,用groupby方法:

    from sklearn import metrics
    
    merge_df.groupby(['time_slot', 'booking_groupid']) 
          .apply(lambda x: metrics.mean_absolute_error(x.non_response_num, x.predict_non_response_num))
          .reset_index(name='MAE')

    groupby后加apply,lambda匿名函数中x表示当前聚到一起的行,利用sklearn计算MAE的值。

    这里groupby返回的结果是series,keys为'time_slot', 'booking_groupid' ,values为计算得出的MAE

    想将此series转换成dataframe,有三种方法:

    1、在apply()之后用.reset_index()方法,参数name是列名

    2、用.to_frame()方法

    3、将series的key和value取出,构建新的frame

    dict = {'index':test_series.keys, 'MAE':test_series.values}
    df = pd.DataFrame(dict)
    

      

    第一种方法得到结果

  • 相关阅读:
    Solution -「ARC 126F」Affine Sort
    Solution -「ABC 219H」Candles
    Solution -「LOCAL」二进制的世界
    Solution Set -「ABC 217」
    Java 封装
    Java 对象和类
    Java 继承
    牛客网MySQL在线编程
    Linux uniq命令
    Linux 单引号、双引号、反引号
  • 原文地址:https://www.cnblogs.com/4PrivetDrive/p/13140753.html
Copyright © 2011-2022 走看看