图像分类tricks
1. framework
pytorchimageclassification: https://github.com/hysts/pytorch_image_classification
2. data augmentation
auto-augment:https://github.com/DeepVoltaire/AutoAugment/blob/master/autoaugment.py
fast-autoaugment: https://github.com/kakaobrain/fast-autoaugment
augmix: https://github.com/google-research/augmix
mixup/cutout: https://github.com/PistonY/torch-toolbox
mixup/cutmix is all you need: https://www.kaggle.com/c/bengaliai-cv19/discussion/126504
Gridmask augmentation: https://www.kaggle.com/haqishen/gridmask
3. pretrained models
pretrained-models.pytorch: https://github.com/Cadene/pretrained-models.pytorch
4. metrick learning
pytorch-metric-learning: https://github.com/KevinMusgrave/pytorch-metric-learning
topkoptimization: https://github.com/BG2CRW/top_k_optimization
5. loss
Class-balanced-loss-pytorch: https://github.com/vandit15/Class-balanced-loss-pytorch
OHEM loss implementation: https://www.kaggle.com/c/bengaliai-cv19/discussion/128637
Focal loss + OHEM implementation: https://www.kaggle.com/c/bengaliai-cv19/discussion/128665
6. label smothing
mixup/cutmix with label smoothing: https://www.kaggle.com/c/bengaliai-cv19/discussion/128115