zoukankan      html  css  js  c++  java
  • Hrnet

    cvpr2019 微软亚洲研究院的工作,主要思想是构建一个并行的多分辨率网络(有的应用只使用高分辨率特征,因此得名),

    这是一个系列的工作,包括分类,检测,分割等。终于来了一个非nas的网络。。。

    项目地址    https://github.com/HRNet

    知乎上的介绍 https://zhuanlan.zhihu.com/p/66848624

    两篇讲的比较清楚的博客

     https://ai-chen.github.io/%E8%AF%AD%E4%B9%89%E5%88%86%E5%89%B2%E8%AE%BA%E6%96%87%E9%98%85%E8%AF%BB/2019/06/20/HrNet-V2.html

    https://zhuanlan.zhihu.com/p/89199075

    虽然讲的是v2,其实跟v1几乎没有区别,分类模型只是差了一个head。

    分类模型的论文https://arxiv.org/pdf/1904.04514.pdf

    下面单独补充下分类的head(可参考下结构 https://github.com/HRNet/HRNet-Image-Classification/blob/master/figures/cls-head.png)

    分为三个部分,incre_modules用于分别增加三个分支的通道数目

    down_modules用于降低三个分支的通道数目以及分辨率,便于进行融合,输出一个1024维的特征

    final_layer通过一个1*1输出2048维的特征,用于最后的类别输出(2048×num_cls)

    def _make_head(self, pre_stage_channels):
            head_block = Bottleneck
            head_channels = [32, 64, 128, 256]
    
            # Increasing the #channels on each resolution 
            # from C, 2C, 4C, 8C to 128, 256, 512, 1024
            incre_modules = []
            for i, channels  in enumerate(pre_stage_channels):
                incre_module = self._make_layer(head_block,
                                                channels,
                                                head_channels[i],
                                                1,
                                                stride=1)
                incre_modules.append(incre_module)
            incre_modules = nn.ModuleList(incre_modules)
                
            # downsampling modules
            downsamp_modules = []
            for i in range(len(pre_stage_channels)-1):
                in_channels = head_channels[i] * head_block.expansion
                out_channels = head_channels[i+1] * head_block.expansion
    
                downsamp_module = nn.Sequential(
                    nn.Conv2d(in_channels=in_channels,
                              out_channels=out_channels,
                              kernel_size=3,
                              stride=2,
                              padding=1),
                    nn.BatchNorm2d(out_channels, momentum=BN_MOMENTUM),
                    nn.ReLU(inplace=True)
                )
    
                downsamp_modules.append(downsamp_module)
            downsamp_modules = nn.ModuleList(downsamp_modules)
    
            final_layer = nn.Sequential(
                nn.Conv2d(
                    in_channels=head_channels[3] * head_block.expansion,
                    out_channels=2048,
                    kernel_size=1,
                    stride=1,
                    padding=0
                ),
                nn.BatchNorm2d(2048, momentum=BN_MOMENTUM),
                nn.ReLU(inplace=True)
            )
    
            return incre_modules, downsamp_modules, final_layer
  • 相关阅读:
    pthread_mutex_init函数与pthread_mutexattr_init函数
    DPDK收发包全景分析
    Linux Bond的原理及其不足
    Cisco VPP启动流程
    组网基础之深入解析二层组播
    vpp命令总结
    全面挖掘Java Excel API 使用方法
    MySQL的varchar定义长度到底是字节还是字符
    MYSQL 用户管理
    MySql中的变量定义
  • 原文地址:https://www.cnblogs.com/573177885qq/p/12247311.html
Copyright © 2011-2022 走看看