数据库配置:
DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'books', #你的数据库名称 'USER': 'root', #你的数据库用户名 'PASSWORD': '', #你的数据库密码 'HOST': '', #你的数据库主机,留空默认为localhost 'PORT': '3306', #你的数据库端口 } }
TIP:
NAME即数据库的名字,在mysql连接前该数据库必须已经创建,而上面的sqlite数据库下的db.sqlite3则是项目自动创建 USER和PASSWORD分别是数据库的用户名和密码。 设置完后,再启动我们的Django项目前,我们需要激活我们的mysql。 然后,启动项目,会报错:no module named MySQLdb 这是因为django默认你导入的驱动是MySQLdb,可是MySQLdb对于py3有很大问题,所以我们需要的驱动是PyMySQL 所以,我们只需要找到项目名文件下的__init__,在里面写入: import pymysql pymysql.install_as_MySQLdb() 问题解决!
经典的书籍出版社作者数据库创建:
from django.db import models<br> class Publisher(models.Model): name = models.CharField(max_length=30, verbose_name="名称") address = models.CharField("地址", max_length=50) city = models.CharField('城市',max_length=60) state_province = models.CharField(max_length=30) country = models.CharField(max_length=50) website = models.URLField() class Meta: verbose_name = '出版商' verbose_name_plural = verbose_name def __str__(self): return self.name class Author(models.Model): name = models.CharField(max_length=30) def __str__(self): return self.name class AuthorDetail(models.Model): sex = models.BooleanField(max_length=1, choices=((0, '男'),(1, '女'),)) email = models.EmailField() address = models.CharField(max_length=50) birthday = models.DateField() author = models.OneToOneField(Author) class Book(models.Model): title = models.CharField(max_length=100) authors = models.ManyToManyField(Author) publisher = models.ForeignKey(Publisher) publication_date = models.DateField() price=models.DecimalField(max_digits=5,decimal_places=2,default=10) def __str__(self): return self.title
<1> 每个数据模型都是django.db.models.Model的子类,它的父类Model包含了所有必要的和数据库交互的方法。并提供了一个简介漂亮的定义数据库字段的语法。
<2> 每个模型相当于单个数据库表(多对多关系例外,会多生成一张关系表),每个属性也是这个表中的字段。属性名就是字段名,它的类型(例如CharField)相当于数据库的字段类型(例如varchar)。大家可以留意下其它的类型都和数据库里的什么字段对应。
<3> 模型之间的三种关系:一对一,一对多,多对多。
一对一:实质就是在主外键(author_id就是foreign key)的关系基础上,给外键加了一个UNIQUE=True的属性;
一对多:就是主外键关系;(foreign key)
多对多:(ManyToManyField) 自动创建第三张表(当然我们也可以自己创建第三张表:两个foreign key)
ORM增加一行数据:
①简单数据
from app01.models import * #create方式一: Author.objects.create(name='Alvin') #create方式二: Author.objects.create(**{"name":"alex"}) #save方式一: author=Author(name="alvin") author.save() #save方式二: author=Author() author.name="alvin" author.save()
②复杂数据
#一对多(ForeignKey): #方式一: 由于绑定一对多的字段,比如publish,存到数据库中的字段名叫publish_id,所以我们可以直接给这个 # 字段设定对应值: Book.objects.create(title='php', publisher_id=2, #这里的2是指为该book对象绑定了Publisher表中id=2的行对象 publication_date='2017-7-7', price=99) #方式二: # <1> 先获取要绑定的Publisher对象: pub_obj=Publisher(name='河大出版社',address='保定',city='保定', state_province='河北',country='China',website='http://www.hbu.com') OR pub_obj=Publisher.objects.get(id=1) # <2>将 publisher_id=2 改为 publisher=pub_obj #多对多(ManyToManyField()): author1=Author.objects.get(id=1) author2=Author.objects.filter(name='alvin')[0] book=Book.objects.get(id=1) book.authors.add(author1,author2) #等同于: book.authors.add(*[author1,author2]) book.authors.remove(*[author1,author2]) #------------------- book=models.Book.objects.filter(id__gt=1) authors=models.Author.objects.filter(id=1)[0] authors.book_set.add(*book) authors.book_set.remove(*book) #------------------- book.authors.add(1) book.authors.remove(1) authors.book_set.add(1) authors.book_set.remove(1) #注意: 如果第三张表是通过models.ManyToManyField()自动创建的,那么绑定关系只有上面一种方式 # 如果第三张表是自己创建的: class Book2Author(models.Model): author=models.ForeignKey("Author") Book= models.ForeignKey("Book") # 那么就还有一种方式: author_obj=models.Author.objects.filter(id=2)[0] book_obj =models.Book.objects.filter(id=3)[0] s=models.Book2Author.objects.create(author_id=1,Book_id=2) s.save() s=models.Book2Author(author=author_obj,Book_id=1) s.save()
ORM删除数据
>>> Book.objects.filter(id=1).delete()
ORM修改数据
#---------------- update方法直接设定对应属性---------------- models.Book.objects.filter(id=3).update(title="PHP") ##sql: ##UPDATE "app01_book" SET "title" = 'PHP' WHERE "app01_book"."id" = 3; args=('PHP', 3) #--------------- save方法会将所有属性重新设定一遍,效率低----------- obj=models.Book.objects.filter(id=3)[0] obj.title="Python" obj.save() # SELECT "app01_book"."id", "app01_book"."title", "app01_book"."price", # "app01_book"."color", "app01_book"."page_num", # "app01_book"."publisher_id" FROM "app01_book" WHERE "app01_book"."id" = 3 LIMIT 1; # # UPDATE "app01_book" SET "title" = 'Python', "price" = 3333, "color" = 'red', "page_num" = 556, # "publisher_id" = 1 WHERE "app01_book"."id" = 3;
TIP:如果需要对数据库的操作执行日志纪录,配置如下
LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'handlers': { 'console':{ 'level':'DEBUG', 'class':'logging.StreamHandler', }, }, 'loggers': { 'django.db.backends': { 'handlers': ['console'], 'propagate': True, 'level':'DEBUG', }, } }
ORM查找数据:
①查询API:
# 查询相关API: # <1>filter(**kwargs): 它包含了与所给筛选条件相匹配的对象 # <2>all(): 查询所有结果 # <3>get(**kwargs): 返回与所给筛选条件相匹配的对象,返回结果有且只有一个,如果符合筛选条件的对象超过一个或者没有都会抛出错误。 #-----------下面的方法都是对查询的结果再进行处理:比如 objects.filter.values()-------- # <4>values(*field): 返回一个ValueQuerySet——一个特殊的QuerySet,运行后得到的并不是一系列 model的实例化对象,而是一个可迭代的字典序列 # <5>exclude(**kwargs): 它包含了与所给筛选条件不匹配的对象 # <6>order_by(*field): 对查询结果排序 # <7>reverse(): 对查询结果反向排序 # <8>distinct(): 从返回结果中剔除重复纪录 # <9>values_list(*field): 它与values()非常相似,它返回的是一个元组序列,values返回的是一个字典序列 # <10>count(): 返回数据库中匹配查询(QuerySet)的对象数量。 # <11>first(): 返回第一条记录 # <12>last(): 返回最后一条记录 # <13>exists(): 如果QuerySet包含数据,就返回True,否则返回False
②Magic Method:
---------------了不起的双下划线(__)之单表条件查询---------------- # models.Tb1.objects.filter(id__lt=10, id__gt=1) # 获取id大于1 且 小于10的值 # # models.Tb1.objects.filter(id__in=[11, 22, 33]) # 获取id等于11、22、33的数据 # models.Tb1.objects.exclude(id__in=[11, 22, 33]) # not in # # models.Tb1.objects.filter(name__contains="ven") # models.Tb1.objects.filter(name__icontains="ven") # icontains大小写不敏感 # # models.Tb1.objects.filter(id__range=[1, 2]) # 范围bettwen and # # startswith,istartswith, endswith, iendswith,
③QuerySet惰性机制:
所谓惰性机制:Publisher.objects.all()或者.filter()等都只是返回了一个QuerySet(查询结果集对象),它并不会马上执行sql,而是当调用QuerySet的时候才执行。
QuerySet特点:
<1> 可迭代的
<2> 可切片
#objs=models.Book.objects.all()#[obj1,obj2,ob3...] #QuerySet: 可迭代 # for obj in objs:#每一obj就是一个行对象 # print("obj:",obj) # QuerySet: 可切片 # print(objs[1]) # print(objs[1:4]) # print(objs[::-1])
④QuerySet的高效使用:
<1>Django的queryset是惰性的 Django的queryset对应于数据库的若干记录(row),通过可选的查询来过滤。例如,下面的代码会得 到数据库中名字为‘Dave’的所有的人:person_set = Person.objects.filter(first_name="Dave") 上面的代码并没有运行任何的数据库查询。你可以使用person_set,给它加上一些过滤条件,或者将它传给某个函数, 这些操作都不会发送给数据库。这是对的,因为数据库查询是显著影响web应用性能的因素之一。 <2>要真正从数据库获得数据,你可以遍历queryset或者使用if queryset,总之你用到数据时就会执行sql. 为了验证这些,需要在settings里加入 LOGGING(验证方式) obj=models.Book.objects.filter(id=3) # for i in obj: # print(i) # if obj: # print("ok") <3>queryset是具有cache的 当你遍历queryset时,所有匹配的记录会从数据库获取,然后转换成Django的model。这被称为执行 (evaluation).这些model会保存在queryset内置的cache中,这样如果你再次遍历这个queryset, 你不需要重复运行通用的查询。 obj=models.Book.objects.filter(id=3) # for i in obj: # print(i) ## models.Book.objects.filter(id=3).update(title="GO") ## obj_new=models.Book.objects.filter(id=3) # for i in obj: # print(i) #LOGGING只会打印一次 <4> 简单的使用if语句进行判断也会完全执行整个queryset并且把数据放入cache,虽然你并不需要这些 数据!为了避免这个,可以用exists()方法来检查是否有数据: obj = Book.objects.filter(id=4) # exists()的检查可以避免数据放入queryset的cache。 if obj.exists(): print("hello world!") <5>当queryset非常巨大时,cache会成为问题 处理成千上万的记录时,将它们一次装入内存是很浪费的。更糟糕的是,巨大的queryset可能会锁住系统 进程,让你的程序濒临崩溃。要避免在遍历数据的同时产生queryset cache,可以使用iterator()方法 来获取数据,处理完数据就将其丢弃。 objs = Book.objects.all().iterator() # iterator()可以一次只从数据库获取少量数据,这样可以节省内存 for obj in objs: print(obj.name) #BUT,再次遍历没有打印,因为迭代器已经在上一次遍历(next)到最后一次了,没得遍历了 for obj in objs: print(obj.name) #当然,使用iterator()方法来防止生成cache,意味着遍历同一个queryset时会重复执行查询。所以使 #用iterator()的时候要当心,确保你的代码在操作一个大的queryset时没有重复执行查询 总结: queryset的cache是用于减少程序对数据库的查询,在通常的使用下会保证只有在需要的时候才会查询数据库。 使用exists()和iterator()方法可以优化程序对内存的使用。不过,由于它们并不会生成queryset cache,可能 会造成额外的数据库查询。
对象,单表,多表查询:
#--------------------对象形式的查找-------------------------- # 正向查找 ret1=models.Book.objects.first() print(ret1.title) print(ret1.price) print(ret1.publisher) print(ret1.publisher.name) #因为一对多的关系所以ret1.publisher是一个对象,而不是一个queryset集合 # 反向查找 ret2=models.Publish.objects.last() print(ret2.name) print(ret2.city) #如何拿到与它绑定的Book对象呢? print(ret2.book_set.all()) #ret2.book_set是一个queryset集合 #---------------了不起的双下划线(__)之单表条件查询---------------- # models.Tb1.objects.filter(id__lt=10, id__gt=1) # 获取id大于1 且 小于10的值 # # models.Tb1.objects.filter(id__in=[11, 22, 33]) # 获取id等于11、22、33的数据 # models.Tb1.objects.exclude(id__in=[11, 22, 33]) # not in # # models.Tb1.objects.filter(name__contains="ven") # models.Tb1.objects.filter(name__icontains="ven") # icontains大小写不敏感 # # models.Tb1.objects.filter(id__range=[1, 2]) # 范围bettwen and # # startswith,istartswith, endswith, iendswith, #----------------了不起的双下划线(__)之多表条件关联查询--------------- # 正向查找(条件) # ret3=models.Book.objects.filter(title='Python').values('id') # print(ret3)#[{'id': 1}] #正向查找(条件)之一对多 ret4=models.Book.objects.filter(title='Python').values('publisher__city') print(ret4) #[{'publisher__city': '北京'}] #正向查找(条件)之多对多 ret5=models.Book.objects.filter(title='Python').values('author__name') print(ret5) ret6=models.Book.objects.filter(author__name="alex").values('title') print(ret6) #注意 #正向查找的publisher__city或者author__name中的publisher,author是book表中绑定的字段 #一对多和多对多在这里用法没区别 # 反向查找(条件) #反向查找之一对多: ret8=models.Publisher.objects.filter(book__title='Python').values('name') print(ret8)#[{'name': '人大出版社'}] 注意,book__title中的book就是Publisher的关联表名 ret9=models.Publisher.objects.filter(book__title='Python').values('book__authors') print(ret9)#[{'book__authors': 1}, {'book__authors': 2}] #反向查找之多对多: ret10=models.Author.objects.filter(book__title='Python').values('name') print(ret10)#[{'name': 'alex'}, {'name': 'alvin'}] #注意 #正向查找的book__title中的book是表名Book #一对多和多对多在这里用法没区别
聚合查询以及分组查询:
聚合查询:
from django.db.models import Avg,Min,Sum,Max 从整个查询集生成统计值。比如,你想要计算所有在售书的平均价钱。Django的查询语法提供了一种方式描述所有 图书的集合。 >>> Book.objects.all().aggregate(Avg('price')) {'price__avg': 34.35} aggregate()子句的参数描述了我们想要计算的聚合值,在这个例子中,是Book模型中price字段的平均值 aggregate()是QuerySet 的一个终止子句,意思是说,它返回一个包含一些键值对的字典。键的名称是聚合值的 标识符,值是计算出来的聚合值。键的名称是按照字段和聚合函数的名称自动生成出来的。如果你想要为聚合值指定 一个名称,可以向聚合子句提供它: >>> Book.objects.aggregate(average_price=Avg('price')) {'average_price': 34.35} 如果你也想知道所有图书价格的最大值和最小值,可以这样查询: >>> Book.objects.aggregate(Avg('price'), Max('price'), Min('price')) {'price__avg': 34.35, 'price__max': Decimal('81.20'), 'price__min': Decimal('12.99')}
分组查询:
Book.objects.values(authors__name='oldboy坑人').annotate(Sum('price'))
F查询和Q查询:
# F 使用查询条件的值,专门取对象中某列值的操作 # from django.db.models import F # models.Tb1.objects.update(num=F('num')+1) # Q 构建搜索条件 from django.db.models import Q #1 Q对象(django.db.models.Q)可以对关键字参数进行封装,从而更好地应用多个查询 q1=models.Book.objects.filter(Q(title__startswith='P')).all() print(q1)#[<Book: Python>, <Book: Perl>] # 2、可以组合使用&,|操作符,当一个操作符是用于两个Q的对象,它产生一个新的Q对象。 Q(title__startswith='P') | Q(title__startswith='J') # 3、Q对象可以用~操作符放在前面表示否定,也可允许否定与不否定形式的组合 Q(title__startswith='P') | ~Q(pub_date__year=2005) # 4、应用范围: # Each lookup function that takes keyword-arguments (e.g. filter(), # exclude(), get()) can also be passed one or more Q objects as # positional (not-named) arguments. If you provide multiple Q object # arguments to a lookup function, the arguments will be “AND”ed # together. For example: Book.objects.get( Q(title__startswith='P'), Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6)) ) #sql: # SELECT * from polls WHERE question LIKE 'P%' # AND (pub_date = '2005-05-02' OR pub_date = '2005-05-06') # import datetime # e=datetime.date(2005,5,6) #2005-05-06 # 5、Q对象可以与关键字参数查询一起使用,不过一定要把Q对象放在关键字参数查询的前面。 # 正确: Book.objects.get( Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6)), title__startswith='P') # 错误: Book.objects.get( question__startswith='P', Q(pub_date=date(2005, 5, 2)) | Q(pub_date=date(2005, 5, 6)))
TIP:
SELECT_RELATED是连表查询,提前将外关联的表和原表关联起来,再去查询数据,可以减少数据库查询次数
PREFETCH_RELATED是提前将外表信息拿到,在原表查询的过程中实时查找外表信息,再综合进行输出