According to Wikipedia:
Insertion sort iterates, consuming one input element each repetition, and growing a sorted output list. Each iteration, insertion sort removes one element from the input data, finds the location it belongs within the sorted list, and inserts it there. It repeats until no input elements remain.
Heap sort divides its input into a sorted and an unsorted region, and it iteratively shrinks the unsorted region by extracting the largest element and moving that to the sorted region. it involves the use of a heap data structure rather than a linear-time search to find the maximum.
Now given the initial sequence of integers, together with a sequence which is a result of several iterations of some sorting method, can you tell which sorting method we are using?
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤). Then in the next line, N integers are given as the initial sequence. The last line contains the partially sorted sequence of the N numbers. It is assumed that the target sequence is always ascending. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print in the first line either "Insertion Sort" or "Heap Sort" to indicate the method used to obtain the partial result. Then run this method for one more iteration and output in the second line the resulting sequence. It is guaranteed that the answer is unique for each test case. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input 1:
10
3 1 2 8 7 5 9 4 6 0
1 2 3 7 8 5 9 4 6 0
Sample Output 1:
Insertion Sort
1 2 3 5 7 8 9 4 6 0
Sample Input 2:
10
3 1 2 8 7 5 9 4 6 0
6 4 5 1 0 3 2 7 8 9
Sample Output 2:
Heap Sort
5 4 3 1 0 2 6 7 8 9
1 #define _CRT_SECURE_NO_WARNINGS 2 #include<stdio.h> 3 #include<malloc.h> 4 #include<stdlib.h> 5 int A[110]; 6 int B[110]; 7 int L; 8 void Swap(int *C,int i, int j) 9 { 10 int temp = C[i]; 11 C[i] = C[j]; 12 C[j] = temp; 13 } 14 void Print(int N) 15 { 16 int i; 17 for (i = 0; i < N - 1; i++) 18 printf("%d ", B[i]); 19 printf("%d", B[i]); 20 } 21 22 int Charge(int N) 23 { 24 int i; 25 if (B[0] > B[1] && B[0] > B[2]) 26 return 1; 27 else 28 return 0; 29 } 30 31 void Insert_Once(int i, int N) 32 { 33 int j; 34 int Temp = B[i]; 35 for (j = i; j > 0 && B[j - 1] > Temp; j--) 36 B[j] = B[j - 1]; 37 B[j] = Temp; 38 } 39 40 void PrecDown(int i,int N) 41 { 42 int Parent, Child; 43 int Tmp = A[i]; 44 for (Parent = i; Parent * 2 + 1 <= N; Parent = Child) 45 { 46 Child = Parent * 2 + 1; 47 if (Child != N && A[Child] < A[Child + 1]) 48 Child++; 49 if (Tmp >= A[Child])break; 50 else 51 A[Parent] = A[Child]; 52 } 53 A[Parent] = Tmp; 54 } 55 void BuildMaxHeap(int N) 56 { 57 for (int i = (N - 1) / 2; i >= 0; i--) 58 PrecDown(i, N - 1); 59 } 60 void Heap_Sort(int N) 61 { 62 for (int i = N - 1; i >= 0; i--) 63 { 64 Swap(A, 0, i); 65 PrecDown(0, i-1); 66 } 67 } 68 int FindI(int N) 69 { 70 int i; 71 for (i = N - 1; i >= 0 && A[i] == B[i]; i--); 72 return i; 73 } 74 void PrecDown_Once(int i) 75 { 76 Swap(B,0, i); 77 int Parent, Child; 78 int tmp; 79 tmp = B[0]; 80 for (Parent = 0; (Parent * 2) + 1 <= i-1; Parent = Child) 81 { 82 Child = (Parent * 2) + 1; 83 if (Child != i-1&& B[Child]<B[Child + 1]) 84 Child++; 85 if (tmp >= B[Child])break; 86 else 87 B[Parent] = B[Child]; 88 } 89 B[Parent] = tmp; 90 } 91 void Heap_Once(int N) 92 { 93 BuildMaxHeap(N); 94 Heap_Sort(N); 95 int i = FindI(N); 96 PrecDown_Once(i); 97 } 98 int main() 99 { 100 int N; 101 int Flag = 0; 102 int OrderPosition = 0; 103 scanf("%d", &N); 104 for (int i = 0; i < N; i++) 105 scanf("%d", &A[i]); 106 for (int i = 0; i < N; i++) 107 scanf("%d", &B[i]); 108 if (Flag = Charge(N)) 109 printf("Heap Sort "); 110 else 111 printf("Insertion Sort "); 112 for (int i = 0; i < N - 1; i++) 113 if (B[i] <= B[i + 1]) //这里必须是大于等于 114 OrderPosition = i + 1; 115 else 116 break; 117 if (Flag) 118 Heap_Once(N); 119 else 120 Insert_Once(OrderPosition + 1, N); 121 Print(N); 122 return 0; 123 }