zoukankan      html  css  js  c++  java
  • python开发笔记-DataFrame的使用

       今天详细做下关于DataFrame的使用,以便以后自己可以翻阅查看

       DataFrame的基本特征:

    1、是一个表格型数据结构

    2、含有一组有序的列

    3、大致可看成共享同一个index的Series集合

       

    import pandas as pd  
    >>> data={'name':['Wangdachui','Linling','Niuyun'],'pay':[4000,5000,6000]}  
    >>> frame=pd.DataFrame(data)  
    >>> frame  
             name   pay  
    0  Wangdachui  4000  
    1     Linling  5000  
    2      Niuyun  6000  
    

      

    import pandas as pd  
    >>> import numpy as np  
    >>> data=np.array([('Wangdachui',4000),('Linling',5000),('Niuyun',6000)])  
    >>> frame=pd.DataFrame(data,index=range(1,4),columns=['name','pay'])  
    >>> frame  
             name   pay  
    1  Wangdachui  4000  
    2     Linling  5000  
    3      Niuyun  6000  
    >>> frame.index  
    RangeIndex(start=1, stop=4, step=1)  
    >>> frame.columns  
    Index(['name', 'pay'], dtype='object')  
    >>> frame.values  
    array([['Wangdachui', '4000'],  
           ['Linling', '5000'],  
           ['Niuyun', '6000']], dtype=object)  
    

      

    frame.index=[2,4,6]  
    >>> frame  
             name   pay  
    2  Wangdachui  4000  
    4     Linling  5000  
    6      Niuyun  6000    

    DataFrame的基本操作

    · 取DataFrame对象的行和列可获得Series:

    frame['name']  
    2    Wangdachui  
    4       Linling  
    6        Niuyun  
    Name: name, dtype: object  
    >>> frame.pay  
    2    4000  
    4    5000  
    6    6000  
    Name: pay, dtype: object  
    >>> frame.iloc[:2,1]  
    2    4000  
    4    5000  
    Name: pay, dtype: object  
    

      DataFrame对象的修改和删除:

      

    frame['name']='admin'  
    >>> frame  
        name   pay  
    2  admin  4000  
    4  admin  5000  
    6  admin  6000  
    >>> del frame['pay']  
    >>> frame  
        name  
    2  admin  
    4  admin  
    6  admin  
    

      DataFrame的统计功能

       

    import pandas as pd  
    >>> import numpy as np  
    >>> data=np.array([('Wangdachui',4000),('Linling',5000),('Niuyun',6000)])  
    >>> frame=pd.DataFrame(data,index=range(1,4),columns=['name','pay'])  
    >>> frame  
             name   pay  
    1  Wangdachui  4000  
    2     Linling  5000  
    3      Niuyun  6000  
    >>> frame.pay.min()  
    '4000'  
    

      

    frame[frame.pay>='5000']  
          name   pay  
    2  Linling  5000  
    3   Niuyun  6000  
    

      

  • 相关阅读:
    超链接
    Image中的alt
    预格式
    json字符串转json对象,json对象转换成java对象
    google-gson 解析json
    java HTTP请求工具
    JS文件中获取contextPath的方法
    eclipse中安装freemarker插件及ftl使用freemarker编辑器
    MyBatis 传入参数之parameterType
    typeAliases别名
  • 原文地址:https://www.cnblogs.com/68xi/p/8564485.html
Copyright © 2011-2022 走看看