zoukankan      html  css  js  c++  java
  • 时间复杂度的概念

    时间复杂度
    (1)时间频度
    一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。算法时间复杂度是指执行算法所需要的计算工作量。
    在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。
    一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度
    在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n^2+3n+4与T(n)=4n^2+2n+1它们的频度不同,但时间复杂度相同,都为O(n^2)。
    按数量级递增排列,常见的时间复杂度有:
    常数阶O(1),对数阶O(log2n)(以2为底n的对数,下同),线性阶O(n),
    线性对数阶O(nlog2n),平方阶O(n^2),立方阶O(n^3),...,
    k次方阶O(n^k),指数阶O(2^n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。
    每天训练发现我比别人做的好慢,但是理解的更深刻,如果一开始学一个新知识点就搜模板,那么这样的人是走不远的,毕业之后带走的只有思维,什么荣誉,奖杯都已经不重要了。
  • 相关阅读:
    MySQL视图
    MySQL触发器
    SQL语法详解
    MySQL函数和操作符
    MySQL常用查询
    MySQL数据类型
    MySQL操作详解
    MySQL学习-SQL约束
    MySQL 其它基本操作
    MySQL创建数据库并插入数据
  • 原文地址:https://www.cnblogs.com/6bing/p/3931283.html
Copyright © 2011-2022 走看看