zoukankan      html  css  js  c++  java
  • Android处理图片OOM的若干方法(转)

    前言

    众所周知,每个Android应用程序在运行时都有一定的内存限制,限制大小一般为16MB或24MB(视平台而定)。因此在开发应用时需要特别关注自身的内存使用量,而一般最耗内存量的资源,一般是图片、音频文件、视频文件等多媒体资源;由于Android系统对音频、视频等资源做了边解析便播放的处理,使用时并不会把整个文件加载到内存中,一般不会出现内存溢出(以下简称OOM)的错误,因此它们的内存消耗问题暂不在本文的讨论范围。本文重点讨论的是图片的内存消耗问题,如果你要开发的是一款图片浏览器应用,例如像Android系统自带的Gallery那样的应用,这个问题将变得尤为突出;如果你开发的是目前的购物客户端,有时候处理不当也会碰到这种问题。

    目前碰到的OOM场景,无外乎以下几种情形,不过无论是哪种情形,解决问题的思路都是一致的。

    (1)显示单张图片,图片文件体积达到3000*4000级别的时候;

    (2)在ListView或Gallery等控件中一次性加载大量图片时;

    相关知识介绍

    1.颜色模型

    常见的颜色模型有RGB、YUV、CMYK等,在大多数图像API中采用的都是RGB模型,Android也是如此;另外,在Android中还有包含透明度Alpha的颜色模型,即ARGB。关于颜色模型更加详细的信息暂不在本文的讨论范围之内。Android处理图片OOM的若干方法小结

    2.计算机中颜色值的数字化编码

    在不考虑透明度的情况下,一个像素点的颜色值在计算机中的表示方法有以下3种:

    (1)浮点数编码:比如float: (1.0, 0.5, 0.75),每个颜色分量各占1个float字段,其中1.0表示该分量的值为全红或全绿或全蓝;

    (2)24位的整数编码:比如24-bit:(255, 128, 196),每个颜色分量各占8位,取值范围0-255,其中255表示该分量的值为全红或全绿或全蓝;

    (3)16位的整数编码:比如16-bit:(31, 45, 31),第1和第3个颜色分量各占5位,取值范围0-31,第2个颜色分量占6位,取值范围0-63;

    在Java中,float类型的变量占32位,int类型的变量占32位,short和char类型的变量都在16位,因此可以看出,用浮点数表示法编码一个像素的颜色,内存占用量是96位即12字节;而用24位整数表示法编码,只要一个int类型变量,占用4个字节(高8位空着,低24位用于表示颜色);用16位整数表示法编码,只要一个short类型变量,占2个字节;因此可以看出采用整数表示法编码颜色值,可以大大节省内存,当然,颜色质量也会相对低一些。在Android中获取Bitmap的时候一般也采用整型编码。

    以上2种整型编码的表示法中,R、G、B各分量的顺序可以是RGB或BGR,Android里采用的是RGB的顺序,本文也都是遵循此顺序来讨论。在24位整型表示法中,由于R、G、B分量各占8位,有时候业内也以RGB888来指代这一信息;类似的,在16位整型表示法中,R、G、B分量分别占5、6、5位,就以RGB565来指代这一信息。

    现在再考虑有透明度的颜色编码,其实方式与无透明度的编码方式一样:24位整型编码RGB模型采用int类型变量,其闲置的高8位正好用于放置透明度分量,其中0表示全透明,255表示完全不透明;按照A、R、G、B的顺序,就可以以ARGB8888来概括这一情形;而16位整型编码的RGB模型采用short类型变量,调整各分量所占为数分别至4位,那么正好可以空出4位来编码透明度值;按照A、R、G、B的顺序,就可以以ARGB4444来概括这一情形。回想一下Android的BitmapConfig类中,有ARGB_8888、ARGB_4444、RGB565等常量,现在可以知道它们分别代表了什么含义。同时也可以计算一张图片在内存中可能占用的大小,比如采用ARGB_8888编码载入一张1920*1200的图片,大概就会占用1920*1200*4/1024/1024=8.79MB的内存。

    3.Bitmap在内存中的存储区域

    对Android内存限制问题做了一些探讨,作者认为Bitmap对象通过栈上的引用来指向堆上的Bitmap对象,而Bitmap对象又对应了一个使用了外部存储的native图像,实际上使用的是byte[]来存储的内存空间。但为了确保外部分配内存成功,应该保证当前已分配的内存加上当前需要分配的内存值,大小不能超过当前堆的最大内存值,而且内存管理上将外部内存完全当成了当前堆的一部分。

    4.Java对象的引用类型

    (1)强引用(StrongReference)如果一个对象具有强引用,那垃圾回收器绝不会回收它。当内存空间不足,Java虚拟机宁愿抛出OutOfMemoryError错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足的问题。

    (2)软引用(SoftReference)如果一个对象只具有软引用,则内存空间足够,垃圾回收器就不会回收它;如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。

    (3)弱引用(WeakReference)弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。

    (4)虚引用(PhantomReference)“虚引用”顾名思义,就是形同虚设,与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收器回收。

    解决OOM的常用方案

    内存限制是Android对应用的一个系统级限制,作为应用层开发人员,没有办法彻底去消灭这个限制,但是可以通过一些手段去合理使用内存,从而规避这个问题。以下是个人总结的一些常用方法:

    (1)缓存图像到内存,采用软引用缓存到内存,而不是在每次使用的时候都从新加载到内存;

    (2)调整图像大小,手机屏幕尺寸有限,分配给图像的显示区域本身就更小,有时图像大小可以做适当调整;

    (3)采用低内存占用量的编码方式,比如Bitmap.Config.ARGB_4444比Bitmap.Config.ARGB_8888更省内存;

    (4)及时回收图像,如果引用了大量Bitmap对象,而应用又不需要同时显示所有图片,可以将暂时用不到的Bitmap对象及时回收掉;

    (5)自定义堆内存分配大小,优化Dalvik虚拟机的堆内存分配;

    本文主要将对前面4种方式做演示和分析。

    演示试验说明

    为了说明出现OOM的场景和解决OOM的方法,本人制作了一个Android应用——OomDemo来演示,此应用的基本情况说明如下:

    (1)该应用展示一个gallery,该gallery只加载图片,gallery的adapter中传入图片的路径而不是图片对象本身,adapter动态加载图片;

    (2)演示所用的图片预存储到sdcard的cache目录下,文件名分别为a.jpg,b.jpg…r.jpg,总共18张;

    (3)图片为规格1920*1200的jpg图片,文件大小在423KB-1.48MB范围内;

    (4)运行环境:模拟器——android2.2版本系统——480*320屏幕尺寸;Moto Defy——2.3.4版本CM7系统——854*480屏幕尺寸;

    (5)程序基本结构图:

    演示结果与说明

    1.演示一

    首先采用最简单的图片加载方式,不带任何图片缓存、调整大小或者回收,SimpleImageLoader.class便是承担此职责。加载图片部分的代码如下:

    @Override
    
    public Bitmap loadBitmapImage(String path) {
    
    return BitmapFactory.decodeFile(path);
    
    }
    
    @Override
    
    public Drawable loadDrawableImage(String path) {
    
    return new BitmapDrawable(path);
    
    }

     

    演示结果:在模拟器上图片只能加载1-3张,之后便会出现OOM错误;在Defy上不会出现错误;原因是两者内存限制不同,Defy上运行的是第三方ROM,内存分配有40MB。另外gallery每次显示一张图片时,都要重新解析获得一张图片,尽管在Defy上还未曾出错,但当图片量加大,GC回收不及时时,还是有可能出现OOM。

    2.演示二

    为图片加载的添加一个软引用缓存,每次图片从缓存中获取图片对象,若缓存中不存在,才会从Sdcard加载图片,并将该对象加入缓存。同时软引用的对象也有助于GC在内存不足的时候回收它们。ImageLoaderWithCache.class负责这个职责,关键代码如下:

    private HashMap<String, SoftReference<Bitmap>> mImageCache;
    
    @Override
    
    public Bitmap loadBitmapImage(String path) {
    
    if(mImageCache.containsKey(path)) {
    
    SoftReference<Bitmap> softReference = mImageCache.get(path);
    
    Bitmap bitmap = softReference.get();
    
    if(null != bitmap)
    
    return bitmap;
    
    }
    
    Bitmap bitmap = BitmapFactory.decodeFile(path);
    
    mImageCache.put(path, new SoftReference<Bitmap>(bitmap));
    
    return bitmap;
    
    }
    
    @Override
    
    public Drawable loadDrawableImage(String path) {
    
    return new BitmapDrawable(loadBitmapImage(path));
    
    }

     

    演示结果:在模拟器上,能不无缓存时多加载1-2张图片,但还是会出现OOM;在Defy上不曾出错。由于本次所用的图片都相对比较占内存,在GC还未来得及回收软引用对象时,就又要申请超出剩余量的内存空间,因此仍然没能完全避免OOM。如果换成加载大量的小图片,比如100*100规格的,缓存中软引用的作用可能就发挥出来了。(这一假设可以进一步试验证明一下)

    3.演示三

    为了进一步避免OOM,除了缓存,还可以对图片进行压缩,进一步节省内存,多数情况下调整图片大小并不会影响应用的表现力。ImageLoaderWithScale.class便是负责这个职责,调整大小的代码如下:

    BitmapFactory.Options options = new BitmapFactory.Options();
    
    options.inJustDecodeBounds = true;
    
    BitmapFactory.decodeFile(path, options);
    
    if (options.mCancel || options.outWidth == -1 || options.outHeight == -1) {
    
    Log.d(“OomDemo”, “alert!!!” + String.valueOf(options.mCancel) + ” ” + options.outWidth + options.outHeight);
    
    return null;
    
    }
    
    options.inSampleSize = Util.computeSampleSize(options, 600, (int) (1 * 1024 * 1024));
    
    Log.d(“OomDemo”, “inSampleSize: ” + options.inSampleSize);
    
    options.inJustDecodeBounds = false;
    
    options.inDither = false;
    
    options.inPreferredConfig = Bitmap.Config.ARGB_8888;
    
    Bitmap bitmap = BitmapFactory.decodeFile(path, options);

     

    演示结果:在上述代码中,首先解码图片的边界,在不需要得到Bitmap对象的前提下就能获得图像宽高(宽高值分别被设置到options.outWidth和options.outHeight两个属性中)。computeSampleSize这个方法的参数分别为“解析图片所需的BitmapFactory.Options”、“调整后图片最小的宽或高值”、“调整后图片的内存占用量上限”。结合原始图片的宽高,此方法可以计算得到一个调整比例,再用此比例调整原始图片并加载到内存中,此时图片所消耗的内存不会超出事先指定的大小。在模拟器中,限制图片所占内存大小为1*1024*1024时,比未压缩过时能加载更多图片,但仍然会出现OOM;若限制图片所占内存大小为0.5*1024*1024,则能完整的载入所有图片。所以调整图片大小还是能够有效节省内存的。在Defy中不会出错,原因同上。

    4.演示四

    在有些情况下,严重缩小图片还是会影响应用的显示效果的,所以有必要在尽可能少地缩小图片的前提下展示图片,此时手动去回收图片就变得尤为重要。在类ImageLoaderWithRecyle.class中,便增加了回收图片资源的方法:

    @Override
    
    public void releaseImage(String path) {
    
    if(mImageCache.containsKey(path)) {
    
    SoftReference<Bitmap> reference = mImageCache.get(path);
    
    Bitmap bitmap = reference.get();
    
    if(null != bitmap) {
    
    Log.d(“OomDemo”, “recyling ” + path);
    
    bitmap.recycle();
    
    }
    
    mImageCache.remove(path);
    
    }
    
    }

     

    演示结果:图片压缩限制仍然维持在1*1024*1024,在adapter中,及时调用releaseImage方法,回收暂时不需要的图片。此时模拟器中也从未出现过OOM,所以总的来讲,综合缓存、调整大小、回收等各种手段,还是能够有效避免OOM的。

    小结

    本文介绍了软引用缓存、调整大小、回收等手段来避免OOM,总体来说效果还是明显的。但实际应用场景中,图片的应用不想本文所演示的那样简单,有时候图片资源可能来自与网络,这时需要配合异步加载的方式先下载图片并通过回调的方法来显示;有时候图片资源还需要加边框、加文字等额外修饰,所以在图片加载之后还要另做处理。

    另外由于本人能力所限以及时间关系,本文还有诸多不完善之处。比如对Android内存分配的理解不深,没能透彻地解释Bitmap的内存占用情况;通过自定义堆内存分配大小,优化Dalvik虚拟机的堆内存分配的方法来解决OOM,本文也没有给予演示;再比如在上文的演示试验里,没有把内存占用情况的详细信息用图像形式直观地展示出来;还有演示所用的图片数量过少、规格单一、测试环境偏少,所有没能进行更加严谨科学的对比试验,遗漏了某些意外情况。最后欢迎大家来共同探索、交流并提出建议。

  • 相关阅读:
    June 26th 2017 Week 26th Monday
    June 25th 2017 Week 26th Sunday
    June 24th 2017 Week 25th Saturday
    June 23rd 2017 Week 25th Friday
    June 22nd 2017 Week 25th Thursday
    2018最佳网页设计:就是要你灵感爆棚!!!
    图片素材类Web原型制作分享-Pexels
    想要打动HR的心,UX设计师求职信究竟应该怎么写?
    【UXPA大赛企业专访】Mockplus:“设计替代开发”将成为现实
    2018年最好的医疗网站设计及配色赏析
  • 原文地址:https://www.cnblogs.com/6yuets2/p/2832700.html
Copyright © 2011-2022 走看看