zoukankan      html  css  js  c++  java
  • L

    Problem F: Fabled Rooks

    ACM: <wbr>uva <wbr>11134We would like to place n rooks, 1 ≤ n ≤ 5000, on a n×n board subject to the following restrictions

    • The i-th rook can only be placed within the rectangle given by its left-upper corner (xliyli) and its right-lower corner (xriyri), where 1 ≤ i ≤ n, 1 ≤ xli ≤ xri ≤ n, 1 ≤ yli ≤ yri ≤ n.
    • No two rooks can attack each other, that is no two rooks can occupy the same column or the same row.

    The input consists of several test cases. The first line of each of them contains one integer number, n, the side of the board. n lines follow giving the rectangles where the rooks can be placed as described above. The i-th line among them gives xliylixri, andyri. The input file is terminated with the integer `0' on a line by itself.

    Your task is to find such a placing of rooks that the above conditions are satisfied and then outputn lines each giving the position of a rook in order in which their rectangles appeared in the input. If there are multiple solutions, any one will do. Output IMPOSSIBLE if there is no such placing of the rooks.

    Sample input

    8 
    1 1 2 2 
    5 7 8 8 
    2 2 5 5 
    2 2 5 5 
    6 3 8 6 
    6 3 8 5 
    6 3 8 8 
    3 6 7 8 
    8 
    1 1 2 2 
    5 7 8 8 
    2 2 5 5 
    2 2 5 5 
    6 3 8 6 
    6 3 8 5 
    6 3 8 8 
    3 6 7 8 
    0 

    Output for sample input


    1 1 
    5 8 
    2 4 
    4 2 
    7 3 
    8 5 
    6 6 
    3 7 
    1 1 
    5 8 
    2 4 
    4 2 
    7 3 
    8 5 
    6 6 
    3 7 


     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 //#include <cmath>   命名冲突   y1 
     5 #include <algorithm>
     6 #include <string>
     7 #include <vector>
     8 #include <stack>
     9 #include <queue>
    10 #include <set>
    11 #include <map>
    12 #include <list>
    13 #include <iomanip>
    14 #include <cstdlib>
    15 #include <sstream>
    16 using namespace std;
    17 typedef long long LL;
    18 const int INF=0x5fffffff;
    19 const double EXP=1e-8;
    20 const int MS=5005;
    21 
    22 int x1[MS], y1[MS], x2[MS], y2[MS], x[MS], y[MS];
    23 
    24 /*
    25 先将各个车分配在同一列的不同行,然后分配不同的列,
    26 使他们彼此错开,任意两个车不在同一列和同一行。
    27 也就是说行和列的分配时可以分开的。或者说独立的
    28 使用贪心法分配。
    29 */
    30 
    31 bool solve(int *a,int *b,int *c,int n)
    32 {
    33    // memset(c,-1,sizeof(c));    注意这样是错误的,因为不知道c到哪里结束。字符串指针才可以,因为有结束符 
    34    fill(c,c+n,-1);          //  ==-1表示还没有分配
    35     for(int col=1;col<=n;col++)
    36     {
    37         int rook=-1,minb=n+1;
    38         for(int i=0;i<n;i++)
    39         {
    40             if(c[i]<0&&col>=a[i]&&b[i]<minb)
    41             {
    42                 rook=i;
    43                 minb=b[i];
    44             }
    45         }
    46         if(rook<0||col>minb)
    47             return false;
    48         c[rook]=col;
    49     }
    50     return true;
    51 }
    52 
    53 int main()
    54 {
    55     int n;
    56     while(scanf("%d",&n)&&n)
    57     {
    58         for(int i=0;i<n;i++)
    59             scanf("%d%d%d%d",&x1[i],&y1[i],&x2[i],&y2[i]);
    60         if(solve(x1,x2,x,n)&&solve(y1,y2,y,n))
    61             for(int i=0;i<n;i++)
    62                 printf("%d %d
    ",x[i],y[i]);
    63         else
    64             printf("IMPOSSIBLE
    ");
    65     }
    66     return 0;
    67 }
  • 相关阅读:
    将Moba的输出导出为文件
    MyBatis入参为0时失效问题
    (笔记)交大电院MEM提前面试优秀经验分享【附面试流程及规则】
    (笔记)GPIO基本原理与寄存器配置(STM32篇)
    (笔记)高速电路板完美走线的诀窍
    使用 python 收集 kubernetes events 并写入 elasticsearch
    java使用io.kubernetes.client-java调用k8s api创建pod/service/ingress示例
    中英文逗号空格分隔符正则式
    SpringCloud学习一-搭建netflix-eureka微服务集群
    Spring 中经典的 9 种设计模式,打死也要记住啊!
  • 原文地址:https://www.cnblogs.com/767355675hutaishi/p/4335970.html
Copyright © 2011-2022 走看看