zoukankan      html  css  js  c++  java
  • kmp算法的应用

    Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one. 

    InputThe first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000]. 
    OutputFor each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead. 
    Sample Input

    2
    13 5
    1 2 1 2 3 1 2 3 1 3 2 1 2
    1 2 3 1 3
    13 5
    1 2 1 2 3 1 2 3 1 3 2 1 2
    1 2 3 2 1

    Sample Output

    6
    -1

    题目大意 :在一串字符中,找到可以匹配的另一字符串。

    题目分析 :算法时间复杂度决定我们必须使用更加快速和有效的算法,即kmp算法。
  • 相关阅读:
    (DP+二分查找) leetcode 300. Longest Increasing Subsequence, 673. Number of Longest Increasing Subsequence
    linux
    电脑突然找不到wifi 的解决方法
    (字典序) leetcode 316. Remove Duplicate letters
    vector insert()
    randrange
    blur、medianBlur、GaussianBlur
    clip
    choice
    randint
  • 原文地址:https://www.cnblogs.com/7750-13/p/7291140.html
Copyright © 2011-2022 走看看