利用指数表和对数表,实现GF(2^8)的乘法优化。
首先利用简单的基础的GF(2^8)乘法,构造指数表和对数表。在这里选取生成元3。
指数表exp[i] = 3^i,对数表log[i] = log3(i)。
要实现x 与 y 相乘,首先利用对数表找出3^m = x, 3^n = y,这时的乘法就是 x * y = 3^m * 3^n = 3^(m+n),然后利用指数表找到exp[m+n]对应的值。
因此所有的乘法都变成了查表操作,提高了效率。但是对于数域较大时,保存对数表和指数表的空间要求较高。典型的牺牲空间换取时间。

#include<iostream> #include<fstream> using namespace std; unsigned char exp[256]; //exp[i] = 3^i unsigned char log[256]; //log[i] = log3(i) unsigned char GFmul(unsigned char a, unsigned char b){ //GF(2^8) 乘法 unsigned char result = 0; if((b&1) == 1)result = a; b >>= 1; for(int i = 1; i < 8; i ++){ if(a > 127){ a = (a << 1) ^ 0x1b; } else{ a <<= 1; } if((b&1) == 1){ result ^= a; } b >>= 1; } return result; } void generateMulTab(){ //选择生成元3作为构造乘法表的基础 const int N = 3; unsigned char tmp = 1; for(int i = 1; i < 256; i ++){ tmp = GFmul(tmp, N); exp[i] = tmp; log[tmp] = i; } } unsigned char GFfastMul(unsigned char x, unsigned char y){ //利用exp和log来查表实现乘法 if(x == 0 || y == 0)return 0; //x = 3^m, y = 3 ^ n; x * y = 3^m * 3^n = 3^(m+n) int m = log[x], n = log[y]; return exp[(m+n)>255?(m+n-255):(m+n)]; } int main(){ //单元测试,乘法打表 generateMulTab(); int count[256]; for(int i = 0; i < 256; i ++)count[i] = 0; unsigned char x, y; x = 0; do{ y = 0; do{ count[GFfastMul(x, y)] ++; y ++; }while(y != 0); x ++; }while(x != 0); ofstream write("Test.txt"); for(int i = 0; i < 256; i ++)write<<i<<" "<<count[i]<<endl; write.close(); return 0; }