zoukankan      html  css  js  c++  java
  • [OJ] Single Number II

    LintCode 83. Single Number II (Medium)
    LeetCode 137. Single Number II (Medium)

    以下算法的复杂度都是:
    时间复杂度: O(n)
    空间复杂度: O(1)

    解法1. 32个计数器

    最简单的思路是用32个计数器, 满3复位0.

    class Solution {
    public:
        int singleNumberII(vector<int> &A) {
            int cnt[32] = {0};
            int res = 0;
            for (int i = 0; i < 32; ++i) {
                for (int n : A) {
                    cnt[i] += (n >> i) & 1;
                    cnt[i] %= 3;
                }
                res |= cnt[i] << i;
            }
            return res;
        }
    };
    

    解法2. 找规律

    我的思路是, 解法1中的计数其实只需要两个bit就够了. 所有的首个bit记做res, 所有的第二个bit记做carry, 找规律:
    如果A[i]的第k位是0, 则rescarry的第k位保持原样.
    如果A[i]的第k位是1, 则:

    res carry res' carry'
    0 0 1 0
    1 0 0 1
    0 1 0 0

    此时(A[i][k]=1时)的规律就是:
    res'[k]=~res[k] & ~carry[k]
    carry'[k]=res[k] & ~carry[k]

    class Solution {
    public:
        int singleNumberII(vector<int> &A) {
            int res = 0, carry = 0;
            for (int n : A) {
                for (int i = 0; i < 32; ++i) {
                    int mask = (1 << i);
                    int bit = n & mask;
                    if (bit) {
                        int newRes = (~mask & res) + ((~res & mask) & (~carry & mask));
                        carry = (~mask & carry) + ((res & mask) & (~carry & mask));
                        res = newRes;
                    }
                }
            }
            return res;
        }
    };
    

    解法2.1. 解法2的简化

    解法2中, 将A[i][k]=0=1的情况合并, 可以得到:
    res'[k]=(A[i][k] & ~res[k] & ~carry[k]) | (~A[i][k] & res[k])
    carry'[k]=(A[i][k] & res[k] & ~carry[k]) | (~A[i][k] & carry[k])
    这样的好处是可以32位一起算, 而不用一位一位地算:
    res'=(A[i] & ~res & ~carry) | (~A[i][k] & res)
    carry'=(A[i] & res & ~carry) | (~A[i][k] & carry)

    class Solution {
    public:
        int singleNumberII(vector<int> &A) {
            int res = 0, carry = 0;
            for (int n : A) {
                int newRes = (n & (~res & ~carry)) | (~n & res);
                carry = (n & (res & ~carry)) | (~n & carry);
                res = newRes;
            }
            return res;
        }
    };
    

    解法3. one, two, three
    Discuss中看到的解法, 自己实在想不出来. 用one, twothree三个int值作为bit flags.
    循环对A[0]A[n]进行考察, 当考察A[i]时:
    S[i]={A[0],...,A[i]},
    S[i]中所有数字的第k位bit的数目%3==1, 则one的第k位为1, 否则为0.
    S[i]中所有数字的第k位bit的数目%3==2, 则two的第k位为1, 否则为0.
    three是一个临时变量, 用于记录这一轮中, 哪些bit的数目恰巧是3的倍数.

    two |= one & n;: 给two加上那些从1到2的数字.
    one ^= n;: 这句比较巧妙, 既删掉了会变成2的那些1, 又加上了新的1.
    three = one & two;: 1+2=3...
    one&= ~three: 从1中刨去那些成为3的1.
    two&= ~three: 从2中跑去那些成为3的2.

    ...如果你能解释得更清晰易懂, 欢迎留言!

    class Solution {
    public:
        int singleNumberII(vector<int> &A) {
            int one = 0, two = 0, three = 0;
            for (int n : A) {
                two |= one & n;
                one ^= n;
                three = one & two;
                one &= ~three;
                two &= ~three;
            }
            return one;
        }
    };
    

    解法3.1. 解法3的变形

    自己没想出解法4, 但是参照它的思路, 写了一个对自己比较直观的算法.

    three = two & n;: 算出从2变成3的那些2.
    two = (two & ~three) | (one & n);: (two & ~three)是从2中刨去那些变为3的2, (one & n)是加上那些从1变成2的1.
    one = (one & ~n) | (n & ~three & ~two);: (one & ~n)是从1中刨去那些变成2的1, (n & ~three & ~two)是加上那些没给"2变3"或"1变2"用过的1.

    class Solution {
    public:
        int singleNumberII(vector<int> &A) {
            int one = 0, two = 0;
            for (int n : A) {
                int three = two & n;
                two = (two & ~three) | (one & n);
                one = (one & ~n) | (n & ~three & ~two);
            }
            return one;
        }
    };
    
  • 相关阅读:
    299. Bulls and Cows
    Canvas实现文字散粒子化
    jQuery触发a标签点击事件-为什么不跳转
    Java 理论与实践: 正确使用 Volatile 变量
    图片全屏背景 代码实例
    Canvas 唯美雨落代码实现
    开发过程中资源限制的挑战
    死锁
    如何减少并发编程中的上下文切换
    Cookie工具类
  • 原文地址:https://www.cnblogs.com/7z7chn/p/5205889.html
Copyright © 2011-2022 走看看