zoukankan      html  css  js  c++  java
  • poj 2559 Largest Rectangle in a Histogram

    Description

    A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles: 

    Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.

    Input

    The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1<=n<=100000. Then follow n integers h1,...,hn, where 0<=hi<=1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.

    Output

    For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.

    Sample Input

    7 2 1 4 5 1 3 3
    4 1000 1000 1000 1000
    0
    

    Sample Output

    8
    4000
    

    Hint

    Huge input, scanf is recommended.

    Source

     
     
    单调栈求左右边界。
    代码:
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <stack>
    
    using namespace std;
    typedef long long ll;
    int n;
    ll in[100002];
    int l[100002],r[100002];
    int main() {
        stack<int> s;
        while(~scanf("%d",&n) && n) {
            while(!s.empty()) s.pop();
            in[++ n] = -1;
            for(int i = 1;i <= n;i ++) {
                if(i < n) scanf("%lld",&in[i]);
                l[i] = r[i] = i;
                while(!s.empty() && in[s.top()] >= in[i]) {
                    l[i] = l[s.top()];
                    r[s.top()] = i - 1;
                    s.pop();
                }
                s.push(i);
            }
            ll ans = 0;
            for(int i = 1;i < n;i ++) {
                ans = max(ans,in[i] * (r[i] - l[i] + 1));
            }
            printf("%lld
    ",ans);
        }
    }
  • 相关阅读:
    jquery 将一组元素转换成数组
    QT5之三大重要窗体
    OSG消息传递机制分析
    OSG消息机制之消息分析
    OSG消息机制之事件处理概述
    OSG 3D场景渲染编程概述
    数据结构之中缀表达式转为后缀
    数据结构之小括号匹配
    考研复习策略
    数据结构之图
  • 原文地址:https://www.cnblogs.com/8023spz/p/10769254.html
Copyright © 2011-2022 走看看