zoukankan      html  css  js  c++  java
  • poj 2559 Largest Rectangle in a Histogram

    Description

    A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles: 

    Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.

    Input

    The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1<=n<=100000. Then follow n integers h1,...,hn, where 0<=hi<=1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.

    Output

    For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.

    Sample Input

    7 2 1 4 5 1 3 3
    4 1000 1000 1000 1000
    0
    

    Sample Output

    8
    4000
    

    Hint

    Huge input, scanf is recommended.

    Source

     
     
    单调栈求左右边界。
    代码:
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <stack>
    
    using namespace std;
    typedef long long ll;
    int n;
    ll in[100002];
    int l[100002],r[100002];
    int main() {
        stack<int> s;
        while(~scanf("%d",&n) && n) {
            while(!s.empty()) s.pop();
            in[++ n] = -1;
            for(int i = 1;i <= n;i ++) {
                if(i < n) scanf("%lld",&in[i]);
                l[i] = r[i] = i;
                while(!s.empty() && in[s.top()] >= in[i]) {
                    l[i] = l[s.top()];
                    r[s.top()] = i - 1;
                    s.pop();
                }
                s.push(i);
            }
            ll ans = 0;
            for(int i = 1;i < n;i ++) {
                ans = max(ans,in[i] * (r[i] - l[i] + 1));
            }
            printf("%lld
    ",ans);
        }
    }
  • 相关阅读:
    虚拟ip配置
    file命令
    df 和du 命令统计磁盘空间不准确
    硬件防火墙品牌排名
    042_翻转单词顺序
    hdu 5057 Argestes and Sequence
    Python+Django+SAE系列教程11-----request/pose/get/表单
    管道(Pipe)/createPipe
    Java的递归算法
    墨菲定律、二八法则、马太效应、手表定理、“不值得”定律、彼得原理、零和游戏、华盛顿合作规律、酒与污水定律、水桶定律、蘑菇管理原理、钱的问题、奥卡姆剃刀等13条是左右人生的金科玉律
  • 原文地址:https://www.cnblogs.com/8023spz/p/10769254.html
Copyright © 2011-2022 走看看