Given a hash table of size N, we can define a hash function (. Suppose that the linear probing is used to solve collisions, we can easily obtain the status of the hash table with a given sequence of input numbers.
However, now you are asked to solve the reversed problem: reconstruct the input sequence from the given status of the hash table. Whenever there are multiple choices, the smallest number is always taken.
Input Specification:
Each input file contains one test case. For each test case, the first line contains a positive integer N (≤), which is the size of the hash table. The next line contains N integers, separated by a space. A negative integer represents an empty cell in the hash table. It is guaranteed that all the non-negative integers are distinct in the table.
Output Specification:
For each test case, print a line that contains the input sequence, with the numbers separated by a space. Notice that there must be no extra space at the end of each line.
Sample Input:
11
33 1 13 12 34 38 27 22 32 -1 21
Sample Output:
1 13 12 21 33 34 38 27 22 32
题目要求是给出了hashing的结果,而且是用的linear probing线性探测解决冲突,要求给出初始序列。负数直接跳过,序列中的数都是非负数。所以遍历给出序列,如果说当前位置的s[i] % n等于i那么就是说不存在冲突,如果不相等就是存在冲突的,经过线性探测才存在当前位置,所以从s[i] % n位置到i之前的数都是比是s[i]先进行操作的,如此我们可以找到序列中数的顺序,进行拓扑排序,如果存在多种可能要求输出最小的,所以用优先队列。
代码:
#include <cstdio> #include <vector> #include <queue> #include <algorithm> using namespace std; int n,s[1000],l[1000],flag; vector<int> v[1000]; struct cmp { bool operator ()(const int &a,const int &b) { return s[a] > s[b]; } }; int main() { scanf("%d",&n); for(int i = 0;i < n;i ++) { scanf("%d",&s[i]); } priority_queue<int,vector<int>,cmp> q; for(int i = 0;i < n;i ++) { if(s[i] < 0) continue; if(s[i] % n != i) { int d = s[i] % n > i ? i + n : i; for(int j = s[i] % n;j < d;j ++) { if(s[j % n] < 0) continue; v[j % n].push_back(i); l[i] ++; } } else q.push(i); } while(!q.empty()) { int temp = q.top(); q.pop(); if(flag) putchar(' '); else flag = 1; printf("%d",s[temp]); for(int i = 0;i < v[temp].size();i ++) { int d = v[temp][i]; l[d] --; if(!l[d]) q.push(d); } } return 0; }