zoukankan      html  css  js  c++  java
  • poj 2387 Til the Cows Come Home

    Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

    Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

    Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.
    Input
    * Line 1: Two integers: T and N

    * Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.
    Output
    * Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.
    Sample Input
    5 5
    1 2 20
    2 3 30
    3 4 20
    4 5 20
    1 5 100
    Sample Output
    90
    Hint
    INPUT DETAILS:

    There are five landmarks.

    OUTPUT DETAILS:

    Bessie can get home by following trails 4, 3, 2, and 1.
     
    题目给出每两个点之间距离,要求求出n到1最短路径,由于路是互通的。
    Bellman-Ford  算法:
    #include <iostream>
    #include <cstdlib>
    #include <queue>
    #include <cstring>
    #include <cstdio>
    #define inf 1000000000
    using namespace std;
    
    int main()
    {
        int m,n,check;
        int u[4000],v[4000],w[4000],dis[1001]={0};
        cin>>m>>n;
        for(int i=1;i<=n-1;i++)
        dis[i]=inf;
        dis[n]=0;
        for(int i=0;i<m;i++)
        {
            cin>>u[i]>>v[i]>>w[i];
        }
        for(int i=m;i<m+m;i++)//反向记录,保证路互通
        {
            u[i]=v[i-m];
            v[i]=u[i-m];
            w[i]=w[i-m];
        }
        for(int i=0;i<n-1;i++)
        {
            check=0;
            for(int j=0;j<m*2;j++)
                if(dis[v[j]]>dis[u[j]]+w[j])dis[v[j]]=dis[u[j]]+w[j],check=1;
            if(!check)break;
        }
        cout<<dis[1];
    }

    Dijkstra 算法:

    #include <iostream>
    #define inf 1000000000
    #define FLAG 0
    using namespace std;
    int mp[1001][1001];
    int main()
    {
        int t,n,u,v,w,book[1001]={0},mind=0,mi;
        int dis[1001];
        cin>>t>>n;
        //initialized
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
                mp[i][j]=inf;
            mp[i][i]=0;
        }
        ///input
        for(int i=0;i<t;i++)
        {
            cin>>u>>v>>w;
            if(mp[u][v]>w)mp[u][v]=mp[v][u]=w;///both-way update the minmum value
        }
        //dijkstra
        for(int i=1;i<=n;i++)
        dis[i]=mp[n][i];
        #if(FLAG)
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            cout<<mp[i][j]<<' ';
            cout<<endl;
        }
        #endif
        for(int i=1;i<=n;i++)
        {
            mind=inf;
            for(int j=1;j<=n;j++)
            if(!book[j]&&dis[j]<mind)mind=dis[j],mi=j;//found the minmum one
            book[mi]=1;
            for(int j=1;j<=n;j++)
            if(!book[j]&&dis[j]>dis[mi]+mp[mi][j])dis[j]=dis[mi]+mp[mi][j];
        }
        cout<<dis[1];
    }

     邻接表版:

    #include <iostream>
    #include <map>
    #include <queue>
    #include <cmath>
    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    #define inf 10001
    using namespace std;
    int first[4002],next[4002];
    int u[4002],v[4002],w[4002];
    int dis[1001],vis[1001];
    int main()
    {
        int N,T,k;
        cin>>T>>N;
        memset(dis,inf,sizeof(dis));
        memset(first,-1,sizeof(next));
        for(int i = 0;i < T;i ++)//无向图
        {
            cin>>u[i]>>v[i]>>w[i];
            u[T + i] = v[i];
            v[T + i] = u[i];
            w[T + i] = w[i];
        }
        for(int i = 0;i < T * 2;i ++)
        {
            next[i] = first[u[i]];
            first[u[i]] = i;
        }
        queue<int>q;
        q.push(N);//N点起始
        dis[N] = 0;
        vis[N] = 1;
        while(!q.empty())
        {
            k = first[q.front()];
            while(k != -1)
            {
                if(dis[q.front()] + w[k] < dis[v[k]])
                {
                    dis[v[k]] = w[k] + dis[q.front()];
                    if(!vis[v[k]])///如果v[k]没有入队,且到v[k]的距离宽松了,就入队
                    {
                        vis[v[k]] = 1;
                        q.push(v[k]);
                    }
                }
                k = next[k];
            }
            vis[q.front()] = 0;
            q.pop();
        }
        cout<<dis[1];//终点1
    }
  • 相关阅读:
    jdbc代码
    openwrt vsftp
    openwrt 配置samba && ubuntu 配置samba
    如何学习开源项目
    Makefile 笔记
    Samba 学习笔记
    quilt-补丁工具
    to-do-list
    新增feeds模块
    linux命令
  • 原文地址:https://www.cnblogs.com/8023spz/p/7273250.html
Copyright © 2011-2022 走看看