zoukankan      html  css  js  c++  java
  • poj 2387 Til the Cows Come Home

    Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

    Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

    Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.
    Input
    * Line 1: Two integers: T and N

    * Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.
    Output
    * Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.
    Sample Input
    5 5
    1 2 20
    2 3 30
    3 4 20
    4 5 20
    1 5 100
    Sample Output
    90
    Hint
    INPUT DETAILS:

    There are five landmarks.

    OUTPUT DETAILS:

    Bessie can get home by following trails 4, 3, 2, and 1.
     
    题目给出每两个点之间距离,要求求出n到1最短路径,由于路是互通的。
    Bellman-Ford  算法:
    #include <iostream>
    #include <cstdlib>
    #include <queue>
    #include <cstring>
    #include <cstdio>
    #define inf 1000000000
    using namespace std;
    
    int main()
    {
        int m,n,check;
        int u[4000],v[4000],w[4000],dis[1001]={0};
        cin>>m>>n;
        for(int i=1;i<=n-1;i++)
        dis[i]=inf;
        dis[n]=0;
        for(int i=0;i<m;i++)
        {
            cin>>u[i]>>v[i]>>w[i];
        }
        for(int i=m;i<m+m;i++)//反向记录,保证路互通
        {
            u[i]=v[i-m];
            v[i]=u[i-m];
            w[i]=w[i-m];
        }
        for(int i=0;i<n-1;i++)
        {
            check=0;
            for(int j=0;j<m*2;j++)
                if(dis[v[j]]>dis[u[j]]+w[j])dis[v[j]]=dis[u[j]]+w[j],check=1;
            if(!check)break;
        }
        cout<<dis[1];
    }

    Dijkstra 算法:

    #include <iostream>
    #define inf 1000000000
    #define FLAG 0
    using namespace std;
    int mp[1001][1001];
    int main()
    {
        int t,n,u,v,w,book[1001]={0},mind=0,mi;
        int dis[1001];
        cin>>t>>n;
        //initialized
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
                mp[i][j]=inf;
            mp[i][i]=0;
        }
        ///input
        for(int i=0;i<t;i++)
        {
            cin>>u>>v>>w;
            if(mp[u][v]>w)mp[u][v]=mp[v][u]=w;///both-way update the minmum value
        }
        //dijkstra
        for(int i=1;i<=n;i++)
        dis[i]=mp[n][i];
        #if(FLAG)
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            cout<<mp[i][j]<<' ';
            cout<<endl;
        }
        #endif
        for(int i=1;i<=n;i++)
        {
            mind=inf;
            for(int j=1;j<=n;j++)
            if(!book[j]&&dis[j]<mind)mind=dis[j],mi=j;//found the minmum one
            book[mi]=1;
            for(int j=1;j<=n;j++)
            if(!book[j]&&dis[j]>dis[mi]+mp[mi][j])dis[j]=dis[mi]+mp[mi][j];
        }
        cout<<dis[1];
    }

     邻接表版:

    #include <iostream>
    #include <map>
    #include <queue>
    #include <cmath>
    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    #define inf 10001
    using namespace std;
    int first[4002],next[4002];
    int u[4002],v[4002],w[4002];
    int dis[1001],vis[1001];
    int main()
    {
        int N,T,k;
        cin>>T>>N;
        memset(dis,inf,sizeof(dis));
        memset(first,-1,sizeof(next));
        for(int i = 0;i < T;i ++)//无向图
        {
            cin>>u[i]>>v[i]>>w[i];
            u[T + i] = v[i];
            v[T + i] = u[i];
            w[T + i] = w[i];
        }
        for(int i = 0;i < T * 2;i ++)
        {
            next[i] = first[u[i]];
            first[u[i]] = i;
        }
        queue<int>q;
        q.push(N);//N点起始
        dis[N] = 0;
        vis[N] = 1;
        while(!q.empty())
        {
            k = first[q.front()];
            while(k != -1)
            {
                if(dis[q.front()] + w[k] < dis[v[k]])
                {
                    dis[v[k]] = w[k] + dis[q.front()];
                    if(!vis[v[k]])///如果v[k]没有入队,且到v[k]的距离宽松了,就入队
                    {
                        vis[v[k]] = 1;
                        q.push(v[k]);
                    }
                }
                k = next[k];
            }
            vis[q.front()] = 0;
            q.pop();
        }
        cout<<dis[1];//终点1
    }
  • 相关阅读:
    SPOJ 4487. Can you answer these queries VI splay
    Oracle Enterprise Linux 64-bit 下Oracle11g的监听配置改动及測试步骤
    欧拉函数
    安装Windows7步骤
    在Eclipse中执行、配置Hadoop
    java设计模式演示样例
    VC中获取窗体句柄的各种方法
    HTML5 Canvas中实现绘制一个像素宽的细线
    Java实现 蓝桥杯VIP 基础练习 Sine之舞
    Java实现 蓝桥杯VIP 基础练习 Sine之舞
  • 原文地址:https://www.cnblogs.com/8023spz/p/7273250.html
Copyright © 2011-2022 走看看