A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. A maximal clique is a clique that cannot be extended by including one more adjacent vertex. (Quoted from https://en.wikipedia.org/wiki/Clique_(graph_theory))
Now it is your job to judge if a given subset of vertices can form a maximal clique.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers Nv (<= 200), the number of vertices in the graph, and Ne, the number of undirected edges. Then Ne lines follow, each gives a pair of vertices of an edge. The vertices are numbered from 1 to Nv.
After the graph, there is another positive integer M (<= 100). Then M lines of query follow, each first gives a positive number K (<= Nv), then followed by a sequence of K distinct vertices. All the numbers in a line are separated by a space.
Output Specification:
For each of the M queries, print in a line "Yes" if the given subset of vertices can form a maximal clique; or if it is a clique but not a maximal clique, print "Not Maximal"; or if it is not a clique at all, print "Not a Clique".
Sample Input:8 10 5 6 7 8 6 4 3 6 4 5 2 3 8 2 2 7 5 3 3 4 6 4 5 4 3 6 3 2 8 7 2 2 3 1 1 3 4 3 6 3 3 2 1Sample Output:
Yes Yes Yes Yes Not Maximal Not a Clique
代码:
#include <iostream> #include <cstring> #include <cstdio> #include <map> #define Max 100005 using namespace std; int nv,ne,m,k; char re[3][20] = {"Not a Clique","Not Maximal","Yes"}; int mp[201][201],vi[201],u[40001],v[40001],fir[40001],nex[40001],vis[201]; int check() { for(int i = 0;i < k;i ++)///判断集合内任意两点是否连通 { for(int j = i + 1;j < k;j ++) { if(!mp[vi[i]][vi[j]])return 0; } }
///满足clique for(int i = 1;i <= nv;i ++)///判断集合外是否存在一点与集合内点都连通 { if(!vis[i]) { int kk = fir[i],c = 0; while(kk != -1) { if(vis[v[kk]])c ++; if(c >= k)return 1; kk = nex[kk]; } } }
///满足maximal return 2; } int main() { scanf("%d%d",&nv,&ne); memset(fir,-1,sizeof(fir)); for(int i = 0;i < ne;i ++) { scanf("%d%d",&u[i],&v[i]); if(u[i] == v[i])i --,ne --; } for(int i = 0;i < ne;i ++) { mp[u[i]][v[i]] = mp[v[i]][u[i]] = 1; u[i + ne] = v[i]; v[i + ne] = u[i]; nex[i] = fir[u[i]]; fir[u[i]] = i; nex[i + ne] = fir[u[i + ne]]; fir[u[i + ne]] = i + ne; } scanf("%d",&m); while(m --) { scanf("%d",&k); memset(vis,0,sizeof(vis)); for(int i = 0;i < k;i ++) { scanf("%d",&vi[i]); vis[vi[i]] = 1; } puts(re[check()]); } }