LCA:(Least Common Ancestors),即最近公共祖先节点。
1 const int maxn = 100003; 2 const int maxl = 19; 3 4 struct Edge { 5 int t; 6 Edge *ne; 7 }; 8 9 int dep[maxn], up[maxn][maxl]; 10 Edge *head[maxn]; 11 12 void DFS(int u) { 13 for (int i = 1; i < maxl; ++ i) { 14 up[u][i] = up[up[u][i - 1]][i - 1]; 15 } 16 for (Edge* e = head[u]; e; e = e->ne) { // 枚举儿子 17 if (!dep[e->t]) { 18 dep[e->t] = dep[u] + 1; 19 up[e->t][0] = u; 20 DFS(e->t); 21 } 22 } 23 } 24 25 int LCA(int u, int v) { 26 if (dep[u] < dep[v]) { 27 swap(u, v); 28 } 29 for (int i = maxl - 1; i >= 0; -- i) { 30 if (dep[up[u][i]] >= dep[v]) { 31 u = up[u][i]; 32 } 33 }//保证深度相同 34 if (u == v) { 35 return u; 36 } 37 for (int i = maxl - 1; i >= 0; -- i) { 38 if (up[u][i] != up[v][i]) { 39 u = up[u][i]; 40 v = up[v][i]; 41 } 42 } 43 return up[u][0]; 44 } 45 46 int main() { 47 memset(dep, -1, sizeof(dep)); 48 dep[1] = 0; 49 up[1][0] = 0; 50 DFS(1); 51 while (q --) { 52 int u, v; 53 cin >> u >> v; 54 cout << LCA(u, v) << endl; 55 } 56 }