zoukankan      html  css  js  c++  java
  • LeetCode 474. Ones and Zeroes

    In the computer world, use restricted resource you have to generate maximum benefit is what we always want to pursue.

    For now, suppose you are a dominator of m0s and n1s respectively. On the other hand, there is an array with strings consisting of only 0s and 1s.

    Now your task is to find the maximum number of strings that you can form with given m0s and n1s. Each 0 and 1 can be used at most once.

    Note:

    1. The given numbers of 0s and 1s will both not exceed 100

    2. The size of given string array won’t exceed 600.

    Example 1:

    Input: Array = {"10", "0001", "111001", "1", "0"}, m = 5, n = 3
    Output: 4
    
    Explanation: This are totally 4 strings can be formed by the using of 5 0s and 3 1s, which are “10,”0001”,”1”,”0”
    

    Example 2:

    Input: Array = {"10", "0", "1"}, m = 1, n = 1
    Output: 2
    
    Explanation: You could form "10", but then you'd have nothing left. Better form "0" and "1". 
    

    分析

    等价于给你一个集合,集合里的是pair, pair.first是string 0的个数,pair.second是string 1的个数。然后给你m,n。让你在集合里尽可能多的选择pair出来,是这些pair的first 之和不大于m, second之和不大于n,就酱。
    我采用的是动态规划,dp[i][j]表示的意义是当m=i, n=j时,能拿取的最大pair数,对每个pair有两种状态,其一是拿取,dp[i][j]=dp[i-pair.first][j-pair.second]+1。其二是不拿,dp[i][j]=dp[i][j];
    故状态转移方程是dp[i][j]=max ( dp[i-pair.first][j-pair.second]+1, dp[i][j]=dp[i][j])

    class Solution {
    public:
        int findMaxForm(vector<string>& strs, int m, int n) {
            vector<pair<int,int>> nums;
            for(int i=0;i<strs.size();i++){
                pair<int,int> p={0,0};
                for(int j=0;j<strs[i].size();j++)
                    strs[i][j]-'0'==1?p.second++:p.first++;
                nums.push_back(p);
            }
            vector<vector<int>> dp(m+1,vector<int>(n+1,0));
            for(auto o:nums)
                for(int i=m;i>=o.first;i--)
                    for(int j=n;j>=o.second;j--)
                        dp[i][j]=max(dp[i][j],dp[i-o.first][j-o.second]+1);
            return dp[m][n];
        }
    };
    
  • 相关阅读:
    Redis常用操作命令
    redis-sentinel.conf配置项详解
    Kafka常用命令
    go modules的使用姿势
    GO语言密码加解密(bcrypt)
    ssh-copy-id 秘钥分发报错
    k8s 命令提示
    算法与数据结构(持续更新)
    【spring】 @PostConstruct注解
    Spring Boot 整合Redis
  • 原文地址:https://www.cnblogs.com/A-Little-Nut/p/10067413.html
Copyright © 2011-2022 走看看