zoukankan      html  css  js  c++  java
  • LeetCode 566. Reshape the Matrix

    In MATLAB, there is a very useful function called ‘reshape’, which can reshape a matrix into a new one with different size but keep its original data.

    You’re given a matrix represented by a two-dimensional array, and two positive integers r and c representing the row number and column number of the wanted reshaped matrix, respectively.

    The reshaped matrix need to be filled with all the elements of the original matrix in the same row-traversing order as they were.

    If the ‘reshape’ operation with given parameters is possible and legal, output the new reshaped matrix; Otherwise, output the original matrix.

    Example 1:

    Input: 
    nums = 
    [[1,2],
     [3,4]]
    r = 1, c = 4
    Output: 
    [[1,2,3,4]]
    Explanation:
    The row-traversing of nums is [1,2,3,4]. The new reshaped matrix is a 1 * 4 matrix, fill it row by row by using the previous list.
    

    Example 2:

    Input: 
    nums = 
    [[1,2],
     [3,4]]
    r = 2, c = 4
    Output:
    [[1,2],
     [3,4]]
    Explanation:
    There is no way to reshape a 2 * 2 matrix to a 2 * 4 matrix. So output the original matrix.
    

    Note:

    • The height and width of the given matrix is in range [1, 100].
    • The given r and c are all positive.
    class Solution {
    public:
        vector<vector<int>> matrixReshape(vector<vector<int>>& nums, int r, int c) {
              if(nums.size()*nums[0].size()!=r*c) return nums;
              int row=nums.size(), col=nums[0].size();
              vector<vector<int>> res;
              vector<int> temp;
              int cnt=0;
              for(int i=0; i<row; i++)
                  for(int j=0; j<col; j++){
                      cnt++;
                      temp.push_back(nums[i][j]);
                      if(cnt%c==0){
                          res.push_back(temp);
                          temp.clear();
                      }
              }
            return res;
        }
    };
    
  • 相关阅读:
    POJ 1364 King (差分约束系统)
    COJ 1086: 超市购物 (背包问题)
    OpenGL 视图和颜色的概念
    OpenGL 位图和图像概念
    OpenGL 状态管理和绘制几何体
    java jni和android java ndk
    android ndk(2)
    effective c++ 跨编译单元之初始化次序 笔记
    OpenGL 帧缓冲区
    c++ 自动对象、静态局部对象和内联函数
  • 原文地址:https://www.cnblogs.com/A-Little-Nut/p/10074005.html
Copyright © 2011-2022 走看看