zoukankan      html  css  js  c++  java
  • Huffman codes

    05-树9 Huffman Codes(30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redundancy Codes", and hence printed his name in the history of computer science. As a professor who gives the final exam problem on Huffman codes, I am encountering a big problem: the Huffman codes are NOT unique. For example, given a string "aaaxuaxz", we can observe that the frequencies of the characters 'a', 'x', 'u' and 'z' are 4, 2, 1 and 1, respectively. We may either encode the symbols as {'a'=0, 'x'=10, 'u'=110, 'z'=111}, or in another way as {'a'=1, 'x'=01, 'u'=001, 'z'=000}, both compress the string into 14 bits. Another set of code can be given as {'a'=0, 'x'=11, 'u'=100, 'z'=101}, but {'a'=0, 'x'=01, 'u'=011, 'z'=001} is NOT correct since "aaaxuaxz" and "aazuaxax" can both be decoded from the code 00001011001001. The students are submitting all kinds of codes, and I need a computer program to help me determine which ones are correct and which ones are not.

    Input Specification:

    Each input file contains one test case. For each case, the first line gives an integer N (2N63), then followed by a line that contains all the N distinct characters and their frequencies in the following format:

    c[1] f[1] c[2] f[2] ... c[N] f[N]
    

    where c[i] is a character chosen from {'0' - '9', 'a' - 'z', 'A' - 'Z', '_'}, and f[i] is the frequency of c[i] and is an integer no more than 1000. The next line gives a positive integer M (1000), then followed by M student submissions. Each student submission consists of Nlines, each in the format:

    c[i] code[i]
    

    where c[i] is the i-th character and code[i] is an non-empty string of no more than 63 '0's and '1's.

    Output Specification:

    For each test case, print in each line either "Yes" if the student's submission is correct, or "No" if not.

    Note: The optimal solution is not necessarily generated by Huffman algorithm. Any prefix code with code length being optimal is considered correct.

    Sample Input:

    7
    A 1 B 1 C 1 D 3 E 3 F 6 G 6
    4
    A 00000
    B 00001
    C 0001
    D 001
    E 01
    F 10
    G 11
    A 01010
    B 01011
    C 0100
    D 011
    E 10
    F 11
    G 00
    A 000
    B 001
    C 010
    D 011
    E 100
    F 101
    G 110
    A 00000
    B 00001
    C 0001
    D 001
    E 00
    F 10
    G 11
    

    Sample Output:

    Yes
    Yes
    No
    No

    这个程序我花了不少时间,改改,找错误,放弃,重写。只能 说细节很多,感觉每个程序 都不是那么简单,需要自己 默默地付出许多。
      1 #include<iostream>
      2 #include<vector>
      3 using namespace std;
      4 #define maxsize 64
      5 struct node{
      6 int weight=-1;
      7 node* l=NULL;
      8 node* r=NULL;
      9 };
     10 using haffmantree=node;
     11 vector<node> Minheap;
     12 vector<int> no;
     13 int size,flag=1;
     14 void Createheap(int N){
     15 Minheap.resize(N+1);
     16 node n; Minheap[0]=n;
     17 size=0;
     18 }
     19 void Insert(node n){
     20   int i=++size;
     21   for(;Minheap[i/2].weight>n.weight;i/=2)
     22   Minheap[i]=Minheap[i/2];
     23   Minheap[i]=n;
     24 }
     25 void ReadData(int N){
     26 for(int i=1;i<=N;i++){
     27 string str; int num;
     28 cin>>str>>num;
     29 no.push_back(num);
     30 node n;
     31 n.weight=num;
     32 Insert(n);
     33 }
     34 }
     35 node* Delete(){
     36 node* n=new node();
     37 n->l=Minheap[1].l;
     38 n->r=Minheap[1].r;
     39 n->weight=Minheap[1].weight;
     40 node temp=Minheap[size--];
     41 int parent,child;
     42 for(parent=1;parent*2<=size;parent=child){
     43 child=2*parent;
     44 if(child!=size&&Minheap[child+1].weight<Minheap[child].weight)
     45 ++child;
     46 if(temp.weight<=Minheap[child].weight) break;
     47 else 
     48 Minheap[parent]=Minheap[child];
     49 }
     50 Minheap[parent]=temp;
     51 return n;
     52 }
     53 haffmantree huffman(int N){
     54     node T;
     55 for(int i=1;i<N;i++){
     56 node n;
     57 n.l=Delete();
     58 n.r=Delete();
     59 n.weight=n.l->weight+n.r->weight;
     60 Insert(n); 
     61 } 
     62 T=*Delete();
     63 return T;
     64 }
     65 int WPL(haffmantree T,int depth)
     66 { 
     67 if(T.l==NULL&&T.r==NULL) return depth*(T.weight);
     68 else return WPL(*(T.l),depth+1)+WPL(*(T.r),depth+1);
     69 }
     70 void judge(haffmantree* h,string code){
     71 for(int i=0;i<code.length();i++){
     72 if(code[i]=='0'){
     73 if(h->l==NULL){
     74 node* nod=new node();
     75 h->l=nod;
     76 }
     77 else if(h->l->weight>0)
     78      flag=0;
     79 h=h->l;
     80 }
     81 else if(code[i]=='1'){
     82 if(h->r==NULL){
     83 node* nod=new node();
     84 h->r=nod;
     85 }else if(h->r->weight>0)
     86      flag=0;
     87     h=h->r;
     88 }
     89 }
     90 if(h->r==NULL&&h->l==NULL)
     91 h->weight=1;
     92 else flag=0;
     93 }
     94 int main(){
     95 int N; cin>>N;
     96 Createheap(N);
     97 ReadData(N);
     98 haffmantree T=huffman(N);
     99 int wpl=WPL(T,0);
    100 int M; cin>>M;
    101 for(int i=1;i<=M;i++){
    102 int len=0; haffmantree* h=new node();
    103 for(int j=0;j<N;j++){
    104 string str,code;
    105 cin>>str>>code;
    106 judge(h,code);
    107 len+=no[j]*code.length();
    108 }
    109 if(len!=wpl) flag=0;
    110 if(flag==1) cout<<"Yes"<<endl;
    111 else cout<<"No"<<endl;
    112 flag=1;
    113 }
    114     return 0; 
    115 } 
    View Code


  • 相关阅读:
    Ios 从无到有项目 MVVM模式(两)
    国外论文搜索
    memcpy的使用方法总结
    简单工厂模式
    curl命令具体解释
    java.lang.Math中的基本方法
    海量数据处理面试题集锦
    BEGINNING SHAREPOINT&#174; 2013 DEVELOPMENT 文件夹
    TinyXml高速入门(一)
    Android SDK 2.2 离线安装
  • 原文地址:https://www.cnblogs.com/A-Little-Nut/p/8056141.html
Copyright © 2011-2022 走看看