zoukankan      html  css  js  c++  java
  • Maximum Subsequence Sum

    01-复杂度2 Maximum Subsequence Sum(25 分)

    Given a sequence of K integers { N1​​, N2​​, ..., NK​​ }. A continuous subsequence is defined to be { Ni​​, Ni+1​​, ..., Nj​​ } where 1ijK. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

    Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

    Input Specification:

    Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (10000). The second line contains K numbers, separated by a space.

    Output Specification:

    For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

    Sample Input:

    10
    -10 1 2 3 4 -5 -23 3 7 -21
     1 #include <stdio.h>  
     2 void MaxSubsseqSum1(int A[], int N) {  
     3     int ThisSum = 0, MaxSum = -1;  
     4     int start,end;  
     5     int temp = 0;  
     6     for (int i = 0; i<N; i++) {  
     7         ThisSum += A[i];  
     8         if (ThisSum>MaxSum){  
     9             MaxSum = ThisSum;  
    10             start = temp;  
    11             end = i;  
    12         } else if (ThisSum<0) {  
    13             ThisSum = 0;  
    14             temp = i+1;  
    15         }  
    16     }  
    17     if (MaxSum>=0) {  
    18     printf("%d %d %d
    ",MaxSum, A[start], A[end]);  
    19     } else {  
    20         printf("0 %d %d
    ", A[0], A[N-1]);  
    21     }  
    22     }  
    23 int main(void) {  
    24     int N;  
    25     scanf("%d",&N);  
    26     int A[N];  
    27     for (int i = 0; i<N;i++) {  
    28         scanf("%d",&A[i]);  
    29     }  
    30     MaxSubsseqSum1(A, N);  
    31 } 
    View Code
     
  • 相关阅读:
    自习任我行第二阶段个人总结9
    自习任我行第二阶段个人总结8
    自习任我行第二阶段个人总结7
    自习任我行第二阶段个人总结6
    自习任我行第二阶段个人总结5
    自习任我行 第二阶段每日个人总结4
    自习任我行 第二阶段每日个人总结3
    自习任我行 第二阶段每日个人总结2
    自习任我行 第二阶段每日个人总结1
    结课总结
  • 原文地址:https://www.cnblogs.com/A-Little-Nut/p/8056171.html
Copyright © 2011-2022 走看看