zoukankan      html  css  js  c++  java
  • PAT 1024. Palindromic Number

    A number that will be the same when it is written forwards or backwards is known as a Palindromic Number(回文数字). For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.

    Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. For example, if we start from 67, we can obtain a palindromic number in 2 steps: 67 + 76 = 143, and 143 + 341 = 484.

    Given any positive integer N, you are supposed to find its paired palindromic number and the number of steps taken to find it.

    Input Specification:

    Each input file contains one test case. Each case consists of two positive numbers N and K, where N (<= 1010) is the initial numer and K (<= 100) is the maximum number of steps. The numbers are separated by a space.

    Output Specification:

    For each test case, output two numbers, one in each line. The first number is the paired palindromic number of N, and the second number is the number of steps taken to find the palindromic number. If the palindromic number is not found after K steps, just output the number obtained at the Kth step and K instead.

    Sample Input 1:
    67 3
    Sample Output 1:
    484
    2
    Sample Input 2:
    69 3
    Sample Output 2:
    1353
    3

    分析
    这题就是比较简单的回文数字判断加上大整数相加。

    #include<iostream>
    #include<algorithm>
    using namespace std;
    bool judge(string n){
    	for(int i=0;i<n.size()/2;i++)
    	    if(n[i]!=n[n.size()-1-i])
    	       return false;
    	return true;
    }
    string add(string m,string n){
    	int p=0,q;
    	string s;
    	for(int i=m.size()-1;i>=0;i--){
    		q=((m[i]-'0')+(n[i]-'0')+p)%10;
    		p=((m[i]-'0')+(n[i]-'0')+p)/10;
    		s.insert(s.begin(),1,'0'+q);
    	}
    	if(p) s.insert(s.begin(),1,'0'+p);
    	return s;
    }
    int main(){
    	string n;
    	int maxsteps,cnt=0;
    	cin>>n>>maxsteps;
    	while(cnt<maxsteps){	
    		if(judge(n))
    		   break;
    		string m=n;
    		reverse(m.begin(),m.end());
    		n=add(m,n);
    		cnt++;
    	}
    	cout<<n<<endl<<cnt;
    	return 0;
    }
    
  • 相关阅读:
    Java的Regex --正则表达式
    Java的包装类
    类的始祖Object
    abstract和interface关键字介绍
    内部类
    Accumulation Degree [换根dp,二次扫描]
    牛客练习赛61 [口胡]
    CF1334G Substring Search [bitset,乱搞]
    CF1175F The Number of Subpermutations [哈希,乱搞]
    CF793G Oleg and chess [线段树优化建边,扫描线,最大流]
  • 原文地址:https://www.cnblogs.com/A-Little-Nut/p/8289078.html
Copyright © 2011-2022 走看看