zoukankan      html  css  js  c++  java
  • LeetCode 712. Minimum ASCII Delete Sum for Two Strings

    Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal.

    Example 1:

    Input: s1 = "sea", s2 = "eat"
    Output: 231
    Explanation: Deleting "s" from "sea" adds the ASCII value of "s" (115) to the sum.
    Deleting "t" from "eat" adds 116 to the sum.
    At the end, both strings are equal, and 115 + 116 = 231 is the minimum sum possible to achieve this.

    Example 2:

    Input: s1 = "delete", s2 = "leet"
    Output: 403
    Explanation: Deleting "dee" from "delete" to turn the string into "let",
    adds 100[d]+101[e]+101[e] to the sum. Deleting "e" from "leet" adds 101[e] to the sum.
    At the end, both strings are equal to "let", and the answer is 100+101+101+101 = 403.
    If instead we turned both strings into "lee" or "eet", we would get answers of 433 or 417, which are higher.

    Note:

    • 0 < s1.length, s2.length <= 1000.
    • All elements of each string will have an ASCII value in [97, 122].

    This is clearly a DP problem.

    dp[i][j] is the cost for s1.substr(0,i) and s2.substr(0, j). Note s1[i], s2[j] not included in the substring.
    
    Base case: dp[0][0] = 0
    target: dp[m][n]
    
    if s1[i-1] = s2[j-1]   // no deletion
        dp[i][j] = dp[i-1][j-1];
    else   // delete either s1[i-1] or s2[j-1]
        dp[i][j] = min(dp[i-1][j]+s1[i-1], dp[i][j-1]+s2[j-1]);
    

    We can use a 2D vector, or an optimized O(n) extra space. See below. The run time is O(mn).

    class Solution {
    public:
        int minimumDeleteSum(string s1, string s2) {
            int m = s1.size(), n = s2.size();
            vector<vector<int>> dp(m+1, vector<int>(n+1, 0));
            for (int j = 1; j <= n; j++)
                dp[0][j] = dp[0][j-1]+s2[j-1];
            for (int i = 1; i <= m; i++) {
                dp[i][0] = dp[i-1][0]+s1[i-1];
                for (int j = 1; j <= n; j++) {
                    if (s1[i-1] == s2[j-1])
                        dp[i][j] = dp[i-1][j-1];
                    else 
                        dp[i][j] = min(dp[i-1][j]+s1[i-1], dp[i][j-1]+s2[j-1]);
                }
            }
            return dp[m][n];
        }
    };
    

    Optimized O(n) extra space

    class Solution {
    public:
        int minimumDeleteSum(string s1, string s2) {
            int m = s1.size(), n = s2.size();
            vector<int> dp(n+1, 0);
            for (int j = 1; j <= n; j++)
                dp[j] = dp[j-1]+s2[j-1];
            for (int i = 1; i <= m; i++) {
                int t1 = dp[0];
                dp[0] += s1[i-1];
                for (int j = 1; j <= n; j++) {
                    int t2 = dp[j];
                    dp[j] = s1[i-1] == s2[j-1]? t1:min(dp[j]+s1[i-1], dp[j-1]+s2[j-1]);
                    t1 = t2;
                }
            }
            return dp[n];
        }
    };
    
  • 相关阅读:
    设计模式学习总结
    算法时间复杂度和空间复杂度表示
    SQLite简单使用
    接口,组合和继承的想法
    二叉树的学习
    Oracle 常用命令大汇总
    Oracle 最常用功能函数经典汇总
    oracle 常用command
    历史最牛演讲:Oracle总裁Yale演讲全文中英文对照
    深入abstract class和interface
  • 原文地址:https://www.cnblogs.com/A-Little-Nut/p/8439094.html
Copyright © 2011-2022 走看看