zoukankan      html  css  js  c++  java
  • PAT 1128 N Queens Puzzle

    The "eight queens puzzle" is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other. Thus, a solution requires that no two queens share the same row, column, or diagonal. The eight queens puzzle is an example of the more general N queens problem of placing N non-attacking queens on an N×N chessboard. (From Wikipedia - "Eight queens puzzle".)

    Here you are NOT asked to solve the puzzles. Instead, you are supposed to judge whether or not a given configuration of the chessboard is a solution. To simplify the representation of a chessboard, let us assume that no two queens will be placed in the same column. Then a configuration can be represented by a simple integer sequence (Q1 ,Q
    ​2​​ ,⋯,QN ), where Qi is the row number of the queen in the i-th column. For example, Figure 1 can be represented by (4, 6, 8, 2, 7, 1, 3, 5) and it is indeed a solution to the 8 queens puzzle; while Figure 2 can be represented by (4, 6, 7, 2, 8, 1, 9, 5, 3) and is NOT a 9 queens' solution.

    8q.jpg  9q.jpg

    Input Specification:

    Each input file contains several test cases. The first line gives an integer K (1<K≤200). Then K lines follow, each gives a configuration in the format "N Q1​ Q2 ... QN ", where 4≤N≤1000 and it is guaranteed that 1≤Qi ≤N for all i=1,⋯,N. The numbers are separated by spaces.

    Output Specification:

    For each configuration, if it is a solution to the N queens problem, print YES in a line; or NO if not.

    Sample Input:

    4
    8 4 6 8 2 7 1 3 5
    9 4 6 7 2 8 1 9 5 3
    6 1 5 2 6 4 3
    5 1 3 5 2 4

    Sample Output:

    YES
    NO
    NO
    YES

    #include<iostream> //水题
    #include<vector>
    #include<math.h>
    using namespace std;
    int main(){
    	int n, m;
    	cin>>n;
    	for(int i=0; i<n; i++){
    		int flag=0;
    		cin>>m;
    		vector<int> v(m+1, 0), visited(m+1, 0);
    		for(int j=1; j<=m; j++){
    			cin>>v[j];
    			if(visited[v[j]]==0) //判断同一行是否有两个点
    				visited[v[j]]=1;
    			else
    				flag=1;
    		}
    		for(int p=1; p<v.size(); p++){ //判断是否对角线上有两个点
    			for(int q=p+1; q<v.size(); q++)
    				if(abs(p-q)==abs(v[p]-v[q])){
    					flag=1;
    					break;
    				}
    			if(flag==1) break;
    		}
    		if(flag==1) cout<<"NO"<<endl;
    		else		cout<<"YES"<<endl;
    	}
    	return 0;
    } 
    
  • 相关阅读:
    Python Flask数据库连接池
    Python Flask 配置文件
    Flask 通过扩展来实现登录验证
    Flask 的系统学习
    Python Flask装饰器登录验证
    Django 批量导入文件
    fedora25的免密码rsync服务配置
    linux强制拷贝避免输入yes方法
    linux系统web站点设置-http基础设置
    rsync用法详细解释
  • 原文地址:https://www.cnblogs.com/A-Little-Nut/p/9506616.html
Copyright © 2011-2022 走看看