第一类(Stirling)数
(egin{bmatrix} n \ m \ end{bmatrix})表示(n)个元素组成(m)个圆排列的方案数。
何为圆排列?即通过排列在一个环上,两两不能通过旋转相互得到的排列的个数。
递推考虑加入的元素要不重新成一个排列,要不放在已有的任一个元素后。
性质
圆排列性质
置换与圆排列关系
一些其他的性质
两个与上升幂与下降幂有关的性质。
上述性质大多可以用数学归纳法证明,限于篇幅,不给出具体证明。
求解第一类(Stirling)数
我们有(O(nlog^2n))的分治(NTT)做法
记生成函数为(f_n=prod_{i=0}^{n-1}(x+i)),可以得到:
这个和第一类(Stirling)数的递推式等价。
求长度为(n)的排列中从左边能看到(A)个且从右边能看到(B)个的数量。(能看到即为前缀/后缀最大值)
按最高的楼分为两部分,左边有(A-1)个,右边有(B-1)个要被看见,这(A+B-2)个都要放在靠边的位置,所以方案数是圆排列(固定了一个为第一个),即(egin{bmatrix} n-1 \ A+B-2 \ end{bmatrix})。
然后选(A-1)个放左边,总方案数为(egin{bmatrix} n-1 \ A+B-2 \ end{bmatrix}cdot egin{pmatrix} A+B-2 \ A-1 \ end{pmatrix})。
和上题除数据范围外都一致,用分治(NTT)的方式求第一类(Stirling)数即可。
给出后面一题的代码
//by OIerC
//Forca Barcelona!
#include<cstdio>
#include<algorithm>
#define rep(i, a, b) for (register int i=(a); i<=(b); ++i)
#define per(i, a, b) for (register int i=(a); i>=(b); --i)
using namespace std;
const int N=400005, P=998244353, G=3;
inline int add(int x, int y){return x+y>=P?x+y-P:x+y;}
inline int sub(int x, int y){return x-y<0?x-y+P:x-y;}
inline int mul(int x, int y){return 1ll*x*y-1ll*x*y/P*P;}
int S[20][N], rev[N], n, A, B;
inline int read()
{
int x=0,f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
int Pow(int x, int t)
{
int res=1;
for (; t; t>>=1, x=mul(x, x)) if (t&1) res=mul(res, x);
return res;
}
int C(int n, int m)
{
int ans=1;
rep(i, n-m+1, n) ans=mul(ans, i);
rep(i, 1, m) ans=mul(ans, Pow(i, P-2));
return ans;
}
void NTT(int *a, int n, int x)
{
for (int i=0; i<n; i++) if (i<rev[i]) swap(a[i], a[rev[i]]);
for (int mid=1, len=2; mid<n; mid<<=1, len<<=1)
{
int Gn=Pow(G, (P-1)/len);
for (int i=0; i<n; i+=len)
{
int Gen=1;
for (int j=0; j<mid; j++, Gen=mul(Gen, Gn))
{
int A1=a[i+j], A2=mul(Gen, a[i+j+mid]);
a[i+j]=add(A1, A2); a[i+j+mid]=sub(A1, A2);
}
}
}
if (!~x)
{
reverse(a+1, a+n);
int inv=Pow(n, P-2);
for (int i=0; i<n; i++) a[i]=mul(a[i], inv);
}
}
void solve(int l, int r, int deg)
{
if (l==r) {S[deg][0]=l; S[deg][1]=1; return;}
int mid=l+r>>1, lim=1, cnt=0;
while (lim<=r-l+1) lim<<=1, cnt++;
solve(l, mid, deg+1);
rep(i, 0, mid-l+1) S[deg][i]=S[deg+1][i];
solve(mid+1, r, deg+1);
rep(i, mid-l+2, lim) S[deg][i]=0;
rep(i, r-mid+1, lim) S[deg+1][i]=0;
rep(i, 0, lim-1) rev[i]=(rev[i>>1]>>1)|((i&1)<<(cnt-1));
NTT(S[deg], lim, 1); NTT(S[deg+1], lim, 1);
rep(i, 0, lim-1) S[deg][i]=mul(S[deg][i], S[deg+1][i]);
NTT(S[deg], lim, -1);
}
int main()
{
n=read(); A=read(); B=read();
if (n-1<A+B-2 || !A || !B) {puts("0"); return 0;}
else if (n==1) {puts("1"); return 0;}
solve(0, n-2, 0);
printf("%d
", mul(C(A+B-2, A-1), S[0][A+B-2]));
return 0;
}
第二类(Stirling)数
(egin{Bmatrix} n \ m \ end{Bmatrix})表示(n)个元素放入(m)个无差别盒子且每个盒子非空的方案数。
性质
右边( imes m!)后变为有序。
容斥,选(i)个盒子为空,剩下(n)个球乱放(m-i)个盒子为((m-i)^n)。
枚举非空盒子个数(i),(egin{Bmatrix} m \ i \ end{Bmatrix})为球放入方案,排列为选盒子方案。
卷积形式,(FFT)即可。时间复杂度(O(nlogn))
例题
(a_i=frac{(-1)^i}{i},b_i=frac{sum_{j=0}^{n}i^j}{i!}),(a_i)直接求,等比数列求和求(b_i)
卷积,(NTT)即可,时间复杂度(O(nlogn))
//by OIerC
//Forca Barcelona!
#include<cstdio>
#include<algorithm>
#define rep(i, a, b) for (register int i=(a); i<=(b); ++i)
#define per(i, a, b) for (register int i=(a); i>=(b); --i)
using namespace std;
typedef long long ll;
const int P=998244353, G=3, N=4000005;
inline int add(int x, int y){return x+y>=P?x+y-P:x+y;}
inline int sub(int x, int y){return x-y<0?x-y+P:x-y;}
inline int mul(int x, int y){return 1ll*x*y-1ll*x*y/P*P;}
int f[N], g[N], rev[N], fac[N], ifac[N];
inline int read()
{
int x=0,f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
int Pow(int x, int t)
{
int res=1;
for (; t; t>>=1, x=mul(x, x)) if (t&1) res=mul(res, x);
return res;
}
void NTT(int *a, int n, int x)
{
for (int i=0; i<n; i++) if (i<rev[i]) swap(a[i], a[rev[i]]);
for (int mid=1, len=2; mid<n; mid<<=1, len<<=1)
{
int Gn=Pow(G, (P-1)/len);
for (int i=0; i<n; i+=len)
{
int Gen=1;
for (int j=0; j<mid; j++, Gen=mul(Gen, Gn))
{
int A1=a[i+j], A2=mul(Gen, a[i+j+mid]);
a[i+j]=add(A1, A2); a[i+j+mid]=sub(A1, A2);
}
}
}
if (!~x)
{
reverse(a+1, a+n);
int inv=Pow(n, P-2);
for (int i=0; i<n; i++) a[i]=mul(a[i], inv);
}
}
int main()
{
int n=read(), ans=0; fac[0]=1;
rep(i, 1, n) fac[i]=mul(fac[i-1], i);
ifac[n]=Pow(fac[n], P-2);
per(i, n-1, 0) ifac[i]=mul(ifac[i+1], i+1);
rep(i, 0, n)
{
f[i]=mul(add(i&1?-1:1, P), ifac[i]);
g[i]=i==1?n+1:mul(mul(sub(Pow(i, n+1), 1), Pow(sub(i, 1), P-2)), ifac[i]);
}
int lim=1, cnt=0;
while (lim<=n<<1) lim<<=1, cnt++;
rep(i, 0, lim) rev[i]=(rev[i>>1]>>1) | ((i&1)<<(cnt-1));
NTT(f, lim, 1); NTT(g, lim, 1);
rep(i, 0, lim) f[i]=mul(f[i], g[i]);
NTT(f, lim, -1);
rep(i, 0, n)
ans=add(ans, mul(mul(Pow(2, i), fac[i]), f[i]));
printf("%d
", ans);
return 0;
}
直接递推求第二类(Stirling)数即可,时间复杂度(O(k^2))
//by OIerC
//Forca Barcelona!
#include<cstdio>
#include<algorithm>
#define rep(i, a, b) for (register int i=(a); i<=(b); ++i)
#define per(i, a, b) for (register int i=(a); i>=(b); --i)
using namespace std;
const int N=5005, P=1000000007;
inline int add(int x, int y){return x+y>=P?x+y-P:x+y;}
inline int sub(int x, int y){return x-y<0?x-y+P:x-y;}
inline int mul(int x, int y){return 1ll*x*y-1ll*x*y/P*P;}
int S[N][N];
inline int read()
{
int x=0,f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
int Pow(int x, int t)
{
int res=1;
for (; t; t>>=1, x=mul(x, x)) if (t&1) res=mul(res, x);
return res;
}
int main()
{
int n=read(), k=read(); S[0][0]=1;
rep(i, 1, k) rep(j, 1, k) S[i][j]=add(S[i-1][j-1], mul(S[i-1][j], j));
int bin=Pow(2, n), inv_2=Pow(2, P-2), down=1, ans=0;
rep(i, 0, min(n, k))
{
ans=add(ans, mul(S[k][i], mul(bin, down)));
bin=mul(bin, inv_2); down=mul(down, n-i);
}
printf("%d
", ans);
return 0;
}
留给读者自行完成