题意:
找出树上异或和最大的一条路径(p)
[_{xor}length(p)=oplus_{ein_p}w(e)
]
01字典树。同样用到了简单的异或性质
- (0oplus a = a, aoplus a = 0)
定义(f(u,v))为(u)到(v)的路径异或和。那么(f(u,v) = f(1,u)oplus f(1,v))
所以我们可以(dfs)跑出(f(1,i)),然后插入字典树,再跑一边在字典树查询即可。
注意建图用前向星建图。
#include<iostream>
#include<algorithm>
#include<string.h>
#include<math.h>
using namespace std;
const int N = 100010;
const int inf = 0X3f3f3f3f;
const long long INF = 0x3f3f3f3f3f3f3f3f;
const double eps = 1e-6;
const double pi = acos(-1.0);
const int mod = 1000000007;
typedef long long ll;
struct Edge{
int to, next, w;
}e[2 * N];
int n;
int head[2 * N];
int tot, cnt;
int val[N], vall[32 * N];
int tri[32 * N][2];
bool vis[N];
void add(int u, int v, int w) {
e[tot].to = v; e[tot].next = head[u]; e[tot].w = w; head[u] = tot++;
e[tot].to = u; e[tot].next = head[v]; e[tot].w = w; head[v] = tot++;
}
void init() {
tot = cnt = 0;
memset(tri, 0, sizeof(tri));
memset(val, 0, sizeof(val));
memset(head, -1, sizeof(head));
memset(vall, 0, sizeof(vall));
for (int i = 1; i <= N; i++) vis[i] = false;
}
void dfs(int id, int x) {
val[id] = x;
vis[id] = true;
for (int i = head[id]; ~i; i = e[i].next) {
int v = e[i].to;
val[v] = x ^ e[i].w;
if (!vis[v])
dfs(v, val[v]);
}
}
void Insert(int x) {
int u = 0;
for (int i = 31; i >= 0; i--) {
int bit = (x & (1 << i)) ? 1 : 0;
if (!tri[u][bit])
tri[u][bit] = tot++;
u = tri[u][bit];
}
vall[u] = x;
}
int Query(int x) {
int u = 0;
for (int i = 31; i >= 0; i--) {
int bit = (x & (1 << i)) ? 1 : 0;
if (tri[u][bit ^ 1])
u = tri[u][bit ^ 1];
else
u = tri[u][bit];
}
return x ^ vall[u];
}
int main() {
while (~scanf("%d", &n)) {
init();
for (int i = 1; i < n; i++) {
int u, v, w;
scanf("%d %d %d", &u, &v, &w);
u++; v++;
add(u, v, w);
}
dfs(1, 0);
for (int i = 1; i <= n; i++) {
Insert(val[i]);
}
int ans = 0;
for (int i = 1; i <= n; i++) {
ans = max(ans, Query(val[i]));
}
printf("%d
", ans);
}
}