zoukankan      html  css  js  c++  java
  • kuangbin专题十二 POJ3186 Treats for the Cows (区间dp)

    Treats for the Cows
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 7949   Accepted: 4217

    Description

    FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.

    The treats are interesting for many reasons:
    • The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
    • Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
    • The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
    • Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.
    Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally?

    The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

    Input

    Line 1: A single integer, N

    Lines 2..N+1: Line i+1 contains the value of treat v(i)

    Output

    Line 1: The maximum revenue FJ can achieve by selling the treats

    Sample Input

    5
    1
    3
    1
    5
    2

    Sample Output

    43

    Hint

    Explanation of the sample:

    Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).

    FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.
     
     
     

    题目大意:给一个长度为n的序列,每次只能从队首或队尾取一个数,第几次取 * f[i] 就是利润,求最大利润。

    看到题目果断贪心,只能局部最优,因为是dp专题,但是丝毫不会dp,看了题解发现是区间dp,然后看着理解了一下,

    dp[i][j] 表示 从第i个数到第j个数的最大利润,由于只能从dp[i+1][j] 和 dp[i][j-1]到达dp[i][j],所以状态转移方程可以表示为 dp[i][j] = max(dp[i+1][j] + f[i] * (n-j+i), dp[i][j-1] + f[j] * (n-j+i),

    这里是由里向外递推的,逆向遍历i。用n-j+i表示第几次取(可以模拟一个简单的看看)

    初始化条件要注意一下,dp[i][i] = f[i] * n 只有一个数时,它就是最后取的。

     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <math.h>
     4 #include <string.h>
     5 #include <stdlib.h>
     6 #include <string>
     7 #include <vector>
     8 #include <set>
     9 #include <map>
    10 #include <queue>
    11 #include <algorithm>
    12 #include <sstream>
    13 #include <stack>
    14 using namespace std;
    15 #define mem(a,b) memset((a),(b),sizeof(a))
    16 #define mp make_pair
    17 #define pb push_back
    18 #define fi first
    19 #define se second
    20 #define sz(x) (int)x.size()
    21 #define all(x) x.begin(),x.end()
    22 typedef long long ll;
    23 const int inf = 0x3f3f3f3f;
    24 const ll INF =0x3f3f3f3f3f3f3f3f;
    25 const double pi = acos(-1.0);
    26 const double eps = 1e-5;
    27 const ll mod = 1e9+7;
    28 //head
    29 const int maxn = 2000 + 5;
    30 int dp[maxn][maxn], f[maxn];//dp[i][j] 表示从i到j的 最大值
    31 
    32 int main() {
    33     int n;
    34     while(~scanf("%d", &n)) {
    35         for(int i = 1; i <= n; i++)
    36             scanf("%d", &f[i]);
    37         mem(dp, 0);
    38         for(int i = 1; i <= n; i++)//初始化 每一个都是最后取的
    39             dp[i][i] = f[i] * n;
    40         for(int i = n - 1; i >= 1; i--) {//从里往外推
    41             for(int j = i + 1; j <= n; j++) {// n - j + i 很巧妙
    42                 dp[i][j] = max(dp[i+1][j] + f[i] * (n - j + i), dp[i][j-1] + f[j] * (n - j + i));//转移方程
    43             }
    44         }
    45         printf("%d
    ", dp[1][n]);
    46     }
    47 }
  • 相关阅读:
    oracle表分区管理partition
    winfrom 界面编辑之疑难杂症
    resx文件引用
    mysql 数据库名含“-”
    KNN算法之图像处理二
    KNN算法之图像处理一
    DCOM初步窥探二
    dcom初步窥探一
    .net组件和com组件&托管代码和非托管代码
    c# apache服务器请求得到数据(初级)
  • 原文地址:https://www.cnblogs.com/ACMerszl/p/9572925.html
Copyright © 2011-2022 走看看